
University of Stirling
Faculty of Natural Sciences

Division of Computing Science and Mathematics

Domain-Specific Optimisations for
Image Processing Algorithms on
Heterogeneous Architectures

Teymoor Rasheed Ali

Thesis submitted in fulfilment of the requirements for
PhD in Computing Science

29/12/2023

Abstract

As real-time embedded vision systems become more ubiquitous, the de-
mand for better energy efficiency, runtime, and accuracy have become vital
metrics in evaluating overall performance. These requirements have led to
innovative computing architectures, leveraging heterogeneity that combine
various accelerators into a single processing fabric. These new architectures
lead to new challenges in understanding the most efficient way to partition
and optimise algorithms on the most suitable accelerator.

In this thesis, domain-specific optimisation techniques are applied to en-
hance performance and resource efficiency for image processing algorithms
onheterogeneous hardware. Domain-specific optimisations are preferred for
being hardware agnostic and their ability to cater to a wider range of image
processing pipelines within the domain. First, a literature analysis is con-
ducted on image processing implementations on heterogeneous hardware,
high-level synthesis tools, optimisation strategies, and frameworks. The first
objective is to develop macro-micro benchmarks for image processing algo-
rithms to determine the suitability of these algorithms on hardware accelera-
tors. The profiling led to the development of a comprehensive benchmarking
framework, Heterogeneous Architecture Benchmarking onUnified Resources
(HArBoUR). The framework decomposes each algorithm into its fundamental
properties that would affect overall performance. A collection of represen-
tative image processing algorithms from various operation domains (e.g., Fil-
ters, Morphological, Geometric, Arithmetic, CNNs, Feature Extraction) and full
pipelines (e.g., edge detection, feature extraction, convolutional neural net-
work) are used as examples to understand the compute efficiency of on three
hardware platforms (CPU, GPU, FPGA).

The results show that parallelism and memory access patterns influence
hardware performance. GPUs excel for algorithms with large data-size paral-
lel operations and regular memory access patterns. FPGAs better suit lower
parallel factor and data-sized operations. In addition, optimising for irregular
memory access patterns and complex computations remains challenging on
both FPGA and GPU architectures. However, FPGAs offer high performance

i

relative to their resource and clock speed, but their specialised architecture
requires careful implementation for optimal results. In the case of feature ex-
traction algorithms, GPU acceleration is preferable for high matrix operation-
intensive stages due to faster execution times. At the same time, FPGAs are
more suitable for lower arithmetic stages due to comparable performance
and energy consumption profiles. Edge detection and CNN pipelines demon-
strate GPUs faster performance but at a significantly higher energy consump-
tion than FPGAs. FPGAs exhibit lower latency than GPUs, considering initiali-
sation and memory transfer times. CPUs perform comparably to both hard-
ware in low-complexity and data-dependant algorithms. In CNN pipelines,
FPGAs compute particular layers faster but generally have slower total infer-
ence times thanGPUs. Nonetheless, FPGAs offer flexibility with bit-widths and
operation-fused custom kernels.

Domain-specific optimisations are applied to algorithms such as SIFT fea-
ture extraction, filter operations, and CNN pipelines to understand the run-
time, energy, and accuracy. Techniques such as downsampling, datatype con-
version, and convolution kernel size reduction are investigated to enhance
performance. These optimisations notably improve computation time across
different processing architectures, with the SIFT algorithm implementation
surpassing state-of-the-art FPGA implementations and achieving comparable
runtime to GPUs at low power. However, these optimisations led to a 5-20%
image accuracy loss across all algorithms.

Finally, the research outcomes described above are applied to two con-
structed heterogeneous architectures aimed at two domains, low-power (LP)
and high-power (HP) systems. Partitioning strategies are explored for map-
ping CNN layers and operation stages of feature extraction algorithms onto
heterogeneous architectures. The results demonstrate that layer-based parti-
tioning methods outperform their fasted homogeneous accelerator counter-
parts regarding energy efficiency and execution time, suggesting a promising
approach for efficient deployment on heterogeneous architectures.

ii

Attestation

I understand the nature of plagiarism, and I am aware of the University’s
policy on this.

I certify that this dissertation reports original work by me during my PhD
except for the following:

• Chapter 4: The results and text are taken frommy own ’A Benchmarking
Framework for Embedded Imaging’ paper.

• Chapter 5: The results and text are from my own ’Domain-Specific Opti-
misations for Real-time Image Processing on FPGAs’ Journal paper.

• Chapter 6: The results and text are from my own ’Energy Aware CNN
Deployment on Heterogeneous Architectures’ paper.

Signature: Teymoor Rasheed Ali 29/12/2023

iii

Acknowledgements

I would like to thank my advisers, Dr. Deepayan Bhowmik and Dr. Robert
Nicol, who have been instrumental in shaping my research path.

This work was supported by STMicroelectronics, Imaging Division and the
University of Stirling, Faculty of Natural Sciences. I express my gratitude to
all the colleagues and members within these institutions who have provided
me with valuable feedback and discussions on my work. In addition, thanks
for allowing me to contribute on many projects that are used by millions of
people across the world.

I would also like to thank my fellow university lab colleagues, Amir M. and
Alexander C., for the countless discussions and late night chess games. Fur-
thermore, thanks to Calum T., and Howard C. within the ST office for the tech-
nical discussions. Thanks to my friends, I have met along the way during my
research: Karen F., Dr. Hannuy C., Dr. Ray W. and many more.

Finally, I would like to thank my parents who have enabled and supported
me to pursue a PhD.

iv

Contents

Abstract i

Attestation iii

Acknowledgements iv

List of Symbols and Acronyms xiii

Statement of Originality xiv

1 Introduction 1

1.1 Motivation . 2
1.2 Research Objectives . 6
1.3 Thesis Outline . 7
1.4 Publications . 8

2 Background 9

2.1 Image Processing Pipeline . 9
2.2 Imaging Sensor . 11

2.2.1 Image Sensor Characterisation 14
2.3 Interface Technologies . 16

2.3.1 Camera Link . 16
2.3.2 Peripheral Component Interface Express (PCIe) 17
2.3.3 Ethernet . 19
2.3.4 Universal Serial Bus (USB) 21
2.3.5 Mobile Industry Processor Interface (MIPI) 23

v

2.3.6 FPGA Mezzanine Card (FMC) 24
2.3.7 Summary . 25

2.4 Hardware Architectures . 26
2.4.1 Multi-Core Central Processing Unit (CPU) 26
2.4.2 Graphics Processing Unit (GPU) 28
2.4.3 Field-Programmable Gate Array (FPGA) 30
2.4.4 Application-Specific Integrated Circuits (ASICs) 32
2.4.5 Heterogeneous Architectures 36
2.4.6 Summary . 38
2.4.7 Software Ecosystem . 38

2.5 Conclusion . 41
3 State-of-the-Art 42

3.1 Hardware Targeting Image Processing 42
3.1.1 Multi-Core CPU Architectures 43
3.1.2 CPU-GPU Architectures . 43
3.1.3 CPU-FPGA Architectures . 44
3.1.4 CPU-GPU-FPGA Architectures 46

3.2 ASIC Architecture . 47
3.3 Image Processing Optimisations 48
3.4 High-Level Synthesis . 55
3.5 Benchmarking . 58
3.6 Evaluated Image Processing Algorithms 60
3.7 Conclusion . 65

4 HArBoUR: Heterogeneous Architecture Benchmarking on Unified
Resources 66

vi

4.1 Introduction . 66
4.2 Benchmarking Framework for Image Processing on Hardware . 68

4.2.1 Processing Pipeline & Operation Types: 69
4.2.2 Operator Group . 70
4.2.3 Heterogeneous Benchmarking Development Flow 76

4.3 Benchmarking Methodology . 78
4.3.1 Micro Benchmarking Algorithms 79
4.3.2 Macro Benchmarking Algorithms 82
4.3.3 Performance Metrics . 84
4.3.4 Measurement Environments 86
4.3.5 Measurement Approach . 87

4.4 Experiments, Results & Discussion 88
4.4.1 Individual ISP Algorithms 88
4.4.2 Combined ISP Pipelines . 92
4.4.3 Energy Consumption & Throughput Results 95
4.4.4 Discussions . 97

4.5 Conclusions . 98
5 Domain-Specific Optimisations 102

5.1 Domain-Specific Optimisations . 103
5.1.1 Optimisation I: Down Sampling 104
5.1.2 Optimisation II: Datatype 105
5.1.3 Optimisation III & IV: Convolution 106

5.2 Case Study Algorithms . 107
5.2.1 SIFT . 107
5.2.2 Digital Filters . 114

vii

5.2.3 Convolutional Neural Network 115
5.3 Experimental Results and Discussion 116

5.3.1 Performance Metrics . 117
5.3.2 Results and Discussions . 120

5.4 Conclusion & Future Direction . 126
6 Image Processing Algorithms on Heterogeneous Platforms 130

6.1 Heterogeneous Architecture . 132
6.1.1 CNN Development Flow: . 132

6.2 Scale-Invariant Feature Transform 133
6.2.1 SIFT Algorithm Analysis . 133
6.2.2 SIFT Profiling & Partitioning Strategy 135

6.3 Convolutional Neural Network . 137
6.3.1 Convolution Neural Network Architecture: 138
6.3.2 CNN Profiling & Partitioning Strategy: 141

6.4 Experimental Setup . 145
6.4.1 CPU-GPU-FPGA Data Communication 148
6.4.2 Execution time . 151
6.4.3 Power Consumption . 151

6.5 Experimental Results . 152
6.5.1 Heterogeneous SIFT Results 152

6.6 Heterogeneous CNN Results . 153
6.6.1 Inference . 154
6.6.2 Total Execution Time . 156
6.6.3 Energy Consumption . 158

6.7 Conclusion . 159

viii

7 Discussion, Conclusions and Future Work 160

7.1 Discussion . 160
7.2 Conclusions . 161
7.3 Limitations & Future work . 162

7.3.1 Heterogeneous Benchmark Framework 162
7.3.2 Domain-Specific Optimisations 163
7.3.3 Heterogeneous Implementations 163
7.3.4 Domain-Specific Language 164

ix

List of Figures

1.1 Semiconductor Timeline . 3
1.2 Wafer Fabrication . 5
2.1 Image-Signal Pipeline . 10
2.2 Image Sensor Architecture . 11
2.3 Image Sensor Circuit Design . 12
2.4 3D Stacked Image Sensor and Memory 14
2.5 Image Sensor Noises . 15
2.6 Camera Link Architecture . 16
2.7 PCIe Architecture . 18
2.8 PCIe Link . 18
2.9 GigE Vision Stream Packet . 20
2.10 MIPI Architecture . 23
2.11 FMC Architecture . 24
2.12 Multi-Core CPU Architecture . 26
2.13 GPU Architecture . 29
2.14 FPGA Architecture . 31
2.15 Vision Processing Unit Architecture 33
2.16 Heterogeneous Architecture . 36
3.1 Generic Soft Processor Architecture 44
3.2 Hardware Pipelining Optimisation 49
4.1 Benchmarking Framework . 69

x

4.2 Framework Pipeline . 76
4.3 Exemplar Image Pipelines . 79
4.4 Exemplar Image Pipelines . 81
4.5 Individual Algorithm Runtime . 88
4.6 Individual Power Consumption 89
4.7 Individual Algorithm Throughput 91
4.8 Individual Algorithm EPO . 92
4.9 Combined Algorithm Runtime . 93
4.10 Combined Algorithm Power Consumption 94
4.11 Combined Algorithms Throughput 95
4.12 Combined Algorithm EPO . 96
5.1 SIFT Algorithmic Block Diagram. 107
5.2 SIFT Scale-Space Block Diagram & Scale Neighbourhood 108
5.3 Magnitude & Orientation Assignment and Keypoint Descriptor

Generation . 109
5.4 High-level block diagram of the SIFT algorithm on FPGA 110
5.5 Gaussian Convolution Module Block Diagram. 111
5.6 Extrema Detection Module Block Diagram. 112
5.7 CORDIC Module Block Diagram. [1] 112
5.8 Descriptor Normalisation Block Diagram 113
5.9 Example approximated 3× 3 image filter kernels. 114
5.10 Typical layers implemented within CNN Architectures. 115
5.11 Filter Algorithms Applied onto Input Image 116
5.12 SIFT: FPS and Accuracy . 121
5.13 Filter: Runtime comparison for optimisations 122
5.14 Filter: Energy consumption comparison 123

xi

5.15 CNN: Comparison Runtime & Accuracy 125
5.16 CNN: Comparison Energy Consumption 126
6.1 CNN Development Flow . 132
6.2 Operation Stage Run-time Profiling: SIFT. 136
6.3 SIFT Algorithm & Partitioning Strategy. 137
6.4 ResNet-18 Architecture & Partitioning Strategy. 138
6.5 MobileNetV2 Architecture & Partitioning Strategy. 140
6.6 ResNet18 Layer Profiling . 142
6.7 MobileNetV2, Layer Profiling . 144
6.8 Heterogeneous Platforms . 146
6.9 Scheduler Architecture . 147
6.10 Data-Transfer on Heterogeneous Architecture 149
6.11 Clamp Power Measurement . 151
6.12 SIFT Power Consumption . 154
6.13 Frames per Second (FPS) for Inference 155
6.14 ResNet18 Energy Consumption . 156
6.15 MobileNetV2 Energy Consumption 157

xii

List of Symbols and Acronyms

Acronyms

Acronym Description
ASIC Application Specific Integrated Circuit
APU Application Processing Unit
CNN Convolution Neural Network
CPU Central Processing Unit
TPU Tensor Processing Unit
NPU Neural Processing Unit
DNN Deep Neural Network
DSL Domain-Specific Language
FFT Fast Fourier Transform
FLOP Floating Point Operation
FPS Frames Per Second
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
HDL Hardware Descriptor Language
HLS High-Level Synthesis
IP Intellectual Property
MSE Mean Square Error
NPU Neural Processing Unit
PCIe Peripheral Component Interconnect Express
ReLU Rectified Linear Unit
ResNet Residual Network
RMSE Root Mean Square Error
RTL Register-Transfer Level
SIFT Scale-Invariant Feature Transform
SSD Solid State Drive
SSIM Structural Similarity Measure
VHDL VHSIC Hardware Description Language
VPU Vision Processing Unit

xiii

Statement of Originality

The research conducted within the scope of this thesis produced the fol-
lowing novel and unique contributions towards domain-specific optimisation
techniques for image processing algorithms on heterogeneous architectures:

Chapter 3

– State of the art analysis of literature foundwithin the heterogeneous com-
puting and domain-specific optimisation research domain.

Chapter 4

– A framework that studies features of image processing algorithms to iden-
tify characteristics. These features help partition complex algorithms in
determining optimal target accelerators within heterogeneous architec-
tures.

– The approach adopts a systemic andmulti-layer strategy that offers trade-
offs between accuracy within the imaging sub-domains e.g., CNNs and
feature extraction. Specifically, HArBoUR enables support in constructing
end to end vision systemswhile providing expected results and guidance.

– Domain knowledge-guided hardware evaluation of computational tasks
allows imaging algorithms to be mapped onto hardware platforms more
efficiently than a heuristic based approach.

– Benchmark of representative image processing algorithms and pipelines
on various hardware platforms and measure their energy consumption
and execution time performance. The results are evaluated to gain insight
into why certain processing accelerators perform better or worse based
on the characteristics of the imaging algorithm.

Chapter 5

– Proposition of four domain-specific optimisation strategies for image pro-
cessing and analysing their impact on performance, power and accuracy;

– Validation of the proposed optimisations on widely used representative
imageprocessing algorithms andCNNarchitectures (MobilenetV2&ResNet50)

xiv

through profiling various components in identifying the common fea-
tures and properties that have the potential for optimisations.

Chapter 6

– Proposal of an efficient deployment of a CNN that is computationally faster
and consumes less energy.

– Novel partitioning methods on a heterogeneous architecture by studying
the features of CNNs to identify characteristics found in each layer which
are used to determine a suitable accelerator.

– Two heterogeneous platforms which consist of two configurations are de-
veloped, one high-performance and the other, power-optimised embed-
ded system.

– Benchmarking and evaluating runtime, energy, and inference of popular
convolution neural networks on a wide range of processing architectures
and heterogeneous systems.

xv

1 Introduction

The emergence of heterogeneous processor technology has enabled real-
time embedded vision systems to become ubiquitous in many applications,
such as robotics [2], autonomous vehicles [3], and satellites [4]. Real-time
image processing is inherently resource-intensive due to the complex algo-
rithms that demand significant computational power andmemory bandwidth.
As such, optimising the performance of image processing systems requires a
delicate balance between hardware capabilities, software efficiency, and algo-
rithmic innovation to ensure timely and responsive processing. Traditionally,
imaging tasks implemented on homogeneous architectures were limited in
their adaptability in handling diverse sets of operations. On the contrary, the
advent of heterogeneous architectures offers a flexible computing environ-
ment that combines multiple accelerators such as CPUs, GPUs, and FPGAs,
offering a choice for executing tasks according to their computational require-
ments.

Integrating such accelerators together poses significant challenges within
design and implementation. These challenges are evident in the complexities
of scheduling tasks on different hardware units, managing synchronisation,
memory coherence, and addressing interconnect requirements. Additionally,
the absence of standardised models for heterogeneous systems impacts the
programming environment, making it challenging for developers to create co-
hesive applications. Lastly, performance evaluation becomes a multifaceted
task, requiring a comprehensive understanding of the interactions between
processing units and their contributions to overall system performance.

However, the primary challenge lies in determining the most effective ap-

1

proach for algorithm partitioning on heterogeneous architectures. Given that
eachprocessing architecture executes specific algorithmsmore efficiently than
the other [5,6]. In addition, navigating an environment with various tool-sets
and libraries further compounds the challenge, requiring developers to care-
fully select and integrate the appropriate tools that alignwith each processor’s
properties. Consequently, partitioned algorithms require further hardware
and algorithmic optimisations to extract maximum performance. Typically,
domain-specific optimisation techniques are often overlooked limiting the full
realisation of performance potential and efficiency gains.

Within the scope of the thesis, the aim is to demonstrate that leveraging
heterogeneous architectures for image processing algorithms will increase
performance in termsof both runtimeandenergy consumption. Consequently,
this work introduces domain-specific optimisation techniques to further im-
prove application efficiency.

1.1 Motivation

The history of the microprocessor can be traced back to 1959 when Fair-child
Semiconductors made a significant breakthrough by creating the first inte-
grated circuit. This invention revolutionised the field of electronics by laying
the foundation for integratingmultiple transistors and other components into
a single silicon chip. In the early 1970s, Intel Corporation introduced the first
commercially available microprocessor. The Intel 4004 [7], released in 1971,
was a 4-bit processor capable of performing basic arithmetic and logical op-
erations, with a clock speed of 740 kHz, it represented a significant leap in
computing power compared to previous electronic circuits. The 4004 was pri-
marily designed for calculators and other small-scale applications but soon
found use in a wide range of devices. Many manufacturers began to con-
tribute and innovate within the microprocessor space. In 1974, Intel released
the 8080 [8], an 8-bit microprocessor that became highly influential.

Continuing through the 1970s and 1980s, microprocessors advanced rapi-
dly, with increasing processing power, efficiency and improved architecture
capabilities. The introduction of 16-bit processors, such as the Intel 8086 and
Motorola 68000, marked another significant milestone, enabling more com-

2

Figure 1.1: Cost, Transistor Count & Gate-length Technology Timeline [10].
plex applications and operating systems. In addition, ARM introduced a new
architecture design which used a reduced instruction set paradigm to stream-
line the execution of instructions. This paved the way for the modern era of
computing, with the rise of personal computers and the increasing integra-
tion of microprocessors into various devices and industries. In subsequent
decades, microprocessors continued to evolve, with advancements in clock
speeds, transistor densities, and architectural designs. The transition from
32-bit to 64-bit architectures expanded the memory addressing capabilities
and enabled more demanding applications. Multi-core processors emerged
in the early 2000s [9], revolutionising computing by enabling parallel process-
ing and significantly improving performance and efficiency.

At around the same time, as CPU processors continued to evolve, two ad-
ditional specialised architectures emerged to address specific computational
needs: GPUs and FPGAs. GPUs were initially designed to handle the complex
computations required for rendering high-quality graphics in video games
and multimedia applications. However, their parallel processing capabilities
and ability to handle large amounts of data made them well-suited for other
computationally intensive tasks, such as scientific simulations. On the other
hand, FPGAs offer a different approach to computing. Unlike CPUs and GPUs,

3

which are based on fixed instruction sets, FPGAs provide programmable logic
that allows users to configure the hardware functionality to suit specific tasks.
This flexibility enables FPGAs to be highly optimised for specific applications,
such as digital signal processing, data encoding, and real-time processing. FP-
GAs are particularly valuable in scenarios that require low latency and high
throughput, as they can be tailored to perform specific operations with ex-
ceptional efficiency.

However, in the past decade, processor architecture designs had begun
to coalesce, which resulted in a convergence of approaches and a common
set of design principles among different CPU manufacturers. As a result, the
X86 and ARM instruction sets are the only remaining architectures used in
the majority of the systems available. This shift was driven by the realisation
that the exponential performance gains seen in previous years were becom-
ing increasingly difficult to achieve due to physical limitations and power con-
straints, reflected in Fig. 1.1.

The recent emergence of deep learning has reignited the pursuit of spe-
cialised computing units, which has fragmented the ecosystem. Developers
have started exploring the potential of domain-specific accelerators such as
TPUs or NPUs to meet specific computational needs. As a result, the pro-
cessor landscape has become increasingly diverse again, with different man-
ufacturers pursuing their unique architectural approaches. The growing set
of domain-specific accelerators has driven designers to adopt newer and in-
novative approaches involving heterogeneity. A chiplet-based approach has
emerged as a promising paradigm by disaggregating specialised processing
units and integrating them into a cohesive interconnected circuit. Each chiplet
serves a specific function, leveragingmodularity and specialisation to enhance
performance, scalability, and customisation. In addition, newpackagingmeth-
ods are utilised to integrate chiplets together, ranging from 2.5D-IC silicon in-
terposers to 3D stacking. Nevertheless, with the deployment of diverse and
heterogeneous architectures, a crucial challenge arises in the form of design-
ing algorithms capable of effectively harnessing the capabilities offered by
these novel architectural frameworks. This necessitates the development of
algorithmic approaches that can optimise performance, exploit parallelism,
and efficiently use the unique features and resources provided by these het-
erogeneous systems.

4

Figure 1.2: Wafer Fabrication Process Steps to Develop Microprocessors.
Wafer fabrication, involves a series of steps to transform a silicon wafer

into an integrated circuit shown in Fig. 1.2, including wafer preparation, pho-
tolithography, etching, layer deposition, and testing for functionality and qual-
ity. The pursuit of smaller transistor sizes, driven by demands for enhanced
memory capacity and processing capabilities, has led to heavy investment in
novel lithography technologies. However, the doubling of transistor densi-
ties every two years, as predicted by Moore’s Law, has started to deviate due
to technological limitations and economic costs. Shrinking transistors face
challenges from the limitations of lithography wavelengths and the increas-
ing complexity ofmanufacturing processes, leading to lower yields and higher
costs. The production of larger silicon wafers has been debated, with the in-
dustry transitioning from small diameters in the 1960s to 300mm wafers as
the standard by the early 1990s. While larger wafers offer cost and yield ben-
efits, transitioning requires equipment redesign and cost-effectiveness con-
siderations.

In summary, recent years have brought about major changes in the semi-
conductor industry, driven by the demand from resource intensive algorithms
such as image processing and higher wafer fabrication cost. As a result, het-
erogeneous architectures serve as a potential to increase systemperformance
further. However, understanding how to efficiently partition algorithms on
each accelerator and identifying domain-specific optimisation trade-offs re-
main key challenges in maximising the potential of these architectures.

5

1.2 Research Objectives

This thesis aims to conduct research on partitioning and optimising image
processing algorithms on heterogeneous architectures to unlock the full en-
ergy and runtime performance. This research encompasses a wide range of
multidisciplinary domains (e.g., hardware (CPU/GPU/FPGA), compilers, sched-
ulers, optimisations and programming languages). Therefore, the focus is re-
fined to three primary objectives in this thesis, which are listed in detail below:
1. Understanding the properties of image processing algorithms and hard-

ware to determine the suitability in order tomap operations to themost
efficient hardware to increase performance. In addition, exploring op-
timised tool-sets and libraries in terms of programmability and perfor-
mance. The goal of this objective is to develop a comprehensive mi-
cro/macro bench-marking framework which distils algorithms into their
principle operations and gives heuristics towards mapping the opera-
tions to correct architecture. Additionally, providing various metrics to
evaluate and compare each accelerator. This work enables the partition-
ing of algorithms on heterogeneous architectures, as realised in later
chapters

2. Investigating domains-specific optimisation techniques which leads to
better performance on hardware by exploiting inherent characteristics
and structures in the image domain. These optimisations are applied in
various combinations to determine the trade-offs in runtime, energy and
accuracy metrics. The outcomes of this research enable understanding
the efficiency of various hardware-agnostic optimisationmethods found
within the image processing domain.

3. Development of a comprehensive heterogeneous platform capable of
executing image processing operations across all processing units while
efficiently scheduling data for optimal performance. This includes de-
signing and developing two complete heterogeneous platforms for high
and low-power applications. Furthermore, using novel layer-wise/stage
partitioning techniques on convolutional neural networks and feature
extraction algorithms to execute on themost suitable accelerator within
the heterogeneous platform. The goal of the objective is to uncover
the advantages of heterogeneous architectures in image processing and
document their performance gains over single-device solutions.

6

1.3 Thesis Outline

The rest of this thesis is organised as follows:
Chapter 2 presents a technical background on the devices, tools and soft-

ware deployed in end to end imaging pipelines. This encompasses types of
imaging sensors, interfaces, hardware architectures for imageprocessing, high-
level synthesis tools and Domain Specific Languages, followed by general dis-
cussions of their advantages and drawbacks within the image processing do-
main.

Chapter 3 critically discusses the state-of-the-art in current literature on
optimisations and architectures, which includes HLS/DSL tools, micro/macro
benchmarking frameworks and methodologies. Furthermore, an analysis of
heterogeneous hardware and their performance in image anddomain-specific
optimisations.

Chapter 4 presents a novel framework methodology HArBoUR, for hetero-
geneous architectures which deconstructs image processing pipelines into
their fundamental operations and evaluates their performance on hardware
platforms, including CPUs, GPUs, and FPGAs. The methodology extends its
evaluation to include various hardware based performance metrics, enabling
a finer-grained analysis of each architecture’s capabilities.

Chapter 5 presents the proposition of domain-specific optimisations for
various imaging and deep-learning algorithms. Each optimisation strategy is
applied individually and in combination, and their effectiveness is validated
using runtime, accuracy and energy consumption metrics.

Chapter 6 proposes two algorithm types and their implementations on
heterogeneous architectures, two convolution neural networks and one fea-
ture extraction algorithm. The accuracy, energy consumption and runtimes
are recorded and compared to their discrete counterparts.

Chapter 7 concludes this thesis by summarising the research outcomes,
i.e., analysis, proposed benchmarking framework and optimisation strategies
on heterogeneous algorithms. Novel contributions are highlighted here along
with suggestions on new ideas for future research in this domain.

7

1.4 Publications

Journals

Ali, T., Bhowmik, D. & Nicol, R. Domain-Specific Optimisations for Image Pro-
cessing on FPGAs. Journal of Signal Process Systems (2023).
https://doi.org/10.1007/s11265-023-01888-2

Reports

M, Bane, O, Brown, T, Ali, D, Bhowmik, J, Quinn, D, Stansby. ENERGETIC (EN-
ergy aware hEteRoGenEous compuTIng at sCale).
https://doi.org/10.23634/MMU.00631226

Under Preparation

Ali, T., Bhowmik, D. & Nicol, R. A Benchmarking Framework for Imaging Algo-
rithms on Heterogeneous Architectures.
Ali, T., Bhowmik, D. & Nicol, R. Energy Aware CNN Deployment on
Heterogeneous Architectures.

8

https://doi.org/10.1007/s11265-023-01888-2
https://doi.org/10.23634/MMU.00631226

2 Background

In this chapter, the following sections review central components that make
up the image processing pipeline. The components are divided into four cat-
egories: 1) Image Sensor Type and Characterisation 2) Interface Technologies
3) Hardware Processing Architectures 4) Software Tool-sets. The first cate-
gory discusses the most common image sensor designs and various noises
sources. The second category observes the data transfer performance of each
interfaces between the sensor and processing hardware. The third category
explores the components of hardware architectures used to execute algo-
rithms. The final category delves into the tools and libraries employed for the
ease of implementation.

2.1 Image Processing Pipeline

Vision applications fundamentally contain a sequence of operations that form
a pipeline shown in Fig. 2.1. Firstly, the image sensor captures photons re-
flected off objects using micro-lens to refract the light into a matrix of wells
containing circuits called pixels and the charge produced from thephotodiode
is converted to a voltage. Once the analogue signal from the image sensor is
converted into a digital format, the image data goes through various pixel and
frame operations to correct any defects found from the introduction of noise.
Furthermore, a full-colour image is reconstructed from the raw frame using a
demosaicing algorithm, which may differ depending on the filter pattern e.g.,
Bayer, X-Trans or EXR. Optionally, the colour image can be compressed into a
JPEG format to reduce file size for transmission. The image may contain help-

9

Figure 2.1: Illustrates the key stages in processing an image signal, which in-cludes the image sensor responsible for capturing data, the Digital Signal Pro-cessor (DSP) for signal processing, and processing architecture used for fur-ther image understanding and labelling.
ful features that define particular objects, such as shape, colour or texture
information. Feature extraction algorithms help identify these characteristics
and compile the features into a vector. Finally, a feature vector or image is
inputted into a classification algorithm such as a convolution neural network
to determine a label or ’class’. The sequence of operations within the pipeline
can be reordered or removed to fulfil particular design requirements.

The imaging pipeline comprises various hardware and software compo-

10

(a) Back-Illuminated (b) Front-Illuminated
Figure 2.2: Cross-Section of CCD and CMOS silicon, revealing internal compo-nents fundamental to converting light into a signal.
nents that enable the efficient implementation and execution of image pro-
cessing algorithms. This chapter presents a complete overview of each com-
ponent and its limitations. These components include imaging sensors, pro-
cessing architectures, interface protocols, vision libraries and other tool-sets
used to develop a heterogeneous system.

2.2 Imaging Sensor

Image sensors are essential components in modern digital imaging devices,
such as digital cameras, smartphones, and surveillance systems. These sen-
sors play a crucial role in capturing and converting light into electrical signals,
which are then processed to form digital images. Image sensors work on the
principle of detecting and measuring light intensity to create a representa-
tion of the scene being captured. The most commonly used image sensing
technologies within vision systems are charge-coupled device (CCD) [11], and
CMOS image sensor(CIS) [12]. CCD technology was developed first and opti-
mised over time for imaging applications, which allowed it to gain a significant
market share compared to the newly developed CIS technology, which suf-
fered in image quality due to higher noise. Therefore, CIS sensors were only
used in applications where lower cost was the driving factor over image qual-
ity. However, over the years, significant advances in silicon size, power con-

11

(a) (b)
Figure 2.3: a) CMOS Circuit b) CCD Circuit,

sumption, process technology and the reduced fabrication cost of CIS technol-
ogy resulted in surpassing CCD in market volume. CIS technology can now be
found in many applications, from smartphones to medical imaging. Current
research on CIS technology focuses on image quality by improving spatial,
intensity, spectral and temporal characteristics [13].

Modern image sensors comprise several layers shown in Fig. 2.2 that inte-
grate together to capture and process light. At the topmost layer, microlenses
focus incoming light onto the pixel array below, enhancing light sensitivity and
overall image quality. Beneath the microlenses lies the pixel array, with each
pixel containing a photodiode responsible for converting photons into elec-
tric charge. A Bayer pattern colour filter [14], located on top of the pixel ar-
ray, captures colour information by using red, green, and blue colour filters
arranged in a specific pattern. Interpolating algorithms reconstruct the full-
colour image from the captured colour data. Wiring and interconnects within
the sensor facilitate the efficient transfer of electrical signals from each pixel
to the readout circuitry, minimising signal degradation and cross-talk. The
silicon substrate forms the foundation for all components, enabling efficient
light conversion by the photodiodes and hosting the CMOS circuits for signal
processing and readout.

The CCD architecture operates on the principle of transferring charge thro-
ugh a sequential shift register. This shift register is a critical component within
the CCD chip, responsible for transporting the accumulated charge from each

12

pixel to the output node for further processing. The photons of light strike
the pixels of the CCD sensor, which absorbs the incident light, generating an
electrical charge proportional to the intensity of the light. The charge in each
pixel is horizontally transferred to neighbouring pixels along the shift register.
This process, known as "horizontal transfer" in the row direction, uses poten-
tial wells to transport charge from one well to the next. After the horizontal
transfer, the charge is vertically shifted down the columns. Manipulating volt-
ages in the vertical shift registers moves the charge from one row to the next,
guiding it towards the output node. The output node stores the accumulated
charge and is connected to an analogue-to-digital converter (ADC) to convert
the analogue charge into a digital signal for further processing and storage.

In a CMOS image sensor, the conversion of light into voltage involves sev-
eral technical steps. Each pixel in the sensor consists of a photodiode, which
acts as a light-sensitive capacitor. When incident photons strike the photo-
diode, it generates electron-hole pairs, and these charge carriers are stored
as electric charge in the capacitor. The accumulated charge in each pixel’s
capacitor is then transferred to an associated charge-to-voltage conversion
circuit, commonly known as the readout circuit. This circuit typically includes
a source follower amplifier or a trans-impedance amplifier. The charge is con-
verted into a corresponding analogue voltage signal, proportional to the in-
tensity of the incident light on the pixel. The output voltage from each pixel is
then sent to the image sensor’s output circuitry for further signal conditioning
and processing. This circuitrymay include analogue signal processing compo-
nents such as analogue filters or amplifiers to enhance the image quality and
reduce noise.

In machine vision, the key performancemetrics are latency and noise. The
differences arise between CMOS and CCD imagers in their signal conversion
processes, transitioning from signal charge to an analogue signal and finally
to a digital one. In CMOS area and line scan imagers, a highly parallel front-
end design enables low bandwidth for each amplifier. Consequently, when
the signal encounters the data path bottleneck, typically at the interface be-
tween the imager and off-chip circuitry, CMOS data firmly resides in the digital
domain. Conversely, high-speed CCDs possess numerous parallel fast output
channels, albeit not as massively parallel as high-speed CMOS imagers. As
a result, each CCD amplifier requires higher bandwidth, leading to increased

13

(a) (b)
Figure 2.4: a) 3D Stacked Image Sensor b) 3D Stacked Memory; The Config-uration Employs Multiple Processing or Memory Layers Vertically Stacked onTop of Each Other, Linked by Through-Silicon Vias (TSVs) and Microbumps.
noise levels. Therefore, high-speed CMOS imagers exhibit the potential for
considerably lower noise compared to high-speed CCDs.

In recent years, semiconductor manufacturers have moved onto stacking
imaging sensors depicted in Fig. 2.4 to reduce the latency between readout
to processing, which was previously developed in the memory domain to in-
crease data storage.

2.2.1 Image Sensor Characterisation

Image sensor characterisation is a process that assesses the performance and
capabilities of imaging sensors. The goal is to understand the sensor’s be-
haviour and limitations to ensure optimal image quality and accurate repre-
sentation of the captured scene. Noise introduced in sensors come from var-
ious sources such as thermal noise, read noise, and photon shot noise, which
can degrade image quality, as observed in 2.5. Characterisation involvesmea-
suring and analysing these noise components to determine their impact on
image fidelity. Noise can be separated into two categories:

• Pattern Noise:

This term describes noise patterns that remain constant or fixed over
time and across multiple frames or exposures. Fixed pattern noise in-
cludes phenomena like Fixed Pattern Noise (FPN), Pixel Non-Uniformity

14

Figure 2.5: The figure illustrates the presence of characteristic fixed noise pat-terns, often resulting from sensor imperfections or calibration issues, along-side temporal noise, which can manifest as random variations in pixel valuesover multiple frames.
(PRNU), and other systematic and deterministic noise sources.

• Random Noise:

The random noise relates to noise that varies over time or across dif-
ferent exposures. It includes sources of noise that exhibit randomness
and unpredictability from frame to frame, such as Photon Shot Noise,
Readout Noise, Amplifier Noise, and Jitter Noise.

Signal-to-noise ratio (SNR) is a standard metric used to quantify the signal
quality captured by the sensor relative to the noise in the image. Dynamic
range is another parameter that refers to the sensor’s ability to capture and
distinguish details in a scene’s bright and dark regions. A wide dynamic range

15

is essential for preserving details in high contrast scenes without overexpos-
ing or underexposing certain areas. Sensitivity and linearity are additional
metrics assessed during the characterisation process. Sensitivity determines
how well the sensor responds to incoming light, while linearity examines how
the sensor’s output corresponds to the actual incident light levels.

2.3 Interface Technologies

Vision systems typically rely on input from cameras or other video sources,
generating a continuous stream of image frames. Designing algorithms for
embedded vision systems requires a detailed understanding of performance
and interfacing technologies. The subsequent sections provide an overview
of various characteristics related to each technology.

2.3.1 Camera Link

Figure 2.6: Camera Link interface, showing the integration of Low Voltage Dif-ferential Signalling (LVDS) technology for noise immunity.
Camera Link [15] is a parallel communication protocol that extends the

Channel Link technology and standardises the interface between cameras
and frame grabbers. Channel Link provides a one-way transmission of 28 data
signals and an associated clock over five LVDS pairs. Among these pairs, one

16

is designated for the clock, while the 28 data signals are multiplexed across
the remaining four pairs exhibited in Fig. 2.6, involving a 7:1 serialisation of
the input data. A single Camera Link connection allocates 24 bits for pixel data
(three 8-bit pixels or two 12-bit pixels) and reserves 4 bits for frame, line, and
pixel data valid signals. The pixel clock operates at amaximum rate of 85MHz.
Additionally, four LVDS pairs facilitate general-purpose camera control from
the frame grabber to the camera, with the specifics defined by the camera
manufacturer. Furthermore, two LVDS pairs are designated for asynchronous
serial communication between the camera and frame grabber, supporting a
minimum baud rate of 9600 for relatively low-speed serial communication.

For higher bandwidth requirements, the medium configuration includes
an additional Channel Link connection, granting an extra 24 bits of pixel data.
The full configuration further extends the capacity by incorporating a third
Channel Link, resulting in a total of 64 bits of pixel data transmission capa-
bility. The versatile nature of Camera Link, with its various configurations,
makes it a widely adopted interface standard for high-performance camera
systems, particularly in applications demanding real-time image capture and
processing.

2.3.2 Peripheral Component Interface Express (PCIe)

The Peripheral Component Interface Express (PCIe) [16] shown in Fig. 2.7, is
an open standard serial bus interface protocol designed in the early 1990s
to provide a high-speed interconnect between devices such as Ethernet con-
trollers, expansion/capture cards, storage and graphics processing units. The
protocol defined a set of registers within each device known as configuration
space, allowing software to view memory and IO resources. In addition, the
exposure of peripheral data enables software to assign an address to each de-
vice without conflict with other systems. Table 2.1 summarises each version
of the PCIe specification ratified in the past and future.

The PCIe architecture consists of a root complex that connects the CPU
and memory subsystem to the PCI Express switch fabric composed of one or
more PCIe/PCI endpoints. The dual-simplex connections between endpoints
are bidirectional, as shown in Fig. 2.8, which allows data to be transmitted and
received simultaneously. The term for this path between the devices is a Link

17

Figure 2.7: The PCIe Architecture consists of Root Complex, PCIe EndpointDevices, and Memory Subsystem. The Root Complex orchestrates data flow,while PCIe Endpoint Devices serve as endpoints for data transactions.

Figure 2.8: The PCIe Communication Data Link between two Devices
and is made up of one or more transmit and receive pairs. One such pair is
called a Lane, and the spec allows a Link to be made up of 1, 2, 4, 8, 12, 16,
or 32 Lanes. The number of lanes is called the Link Width and is represented
as x1, x2, x4, x8, x16, and x32. The trade-off regarding the number of lanes
to be used in a given design is that having more lanes increases the Link’s
bandwidth but at the cost of space requirement and power consumption.

18

Table 2.1: PCIe Specification Summary.
PCIe

Specification
Release
Year

Data Rate
(GT/s) Encoding Total

Bandwidth (GB/s)PCIe 1.0 2003 2.5 8b/10b 8PCIe 2.0 2007 5 8b/10b 16PCIe 3.0 2010 8 128b/130b 32PCIe 4.0 2017 16 128b/130b 64PCIe 5.0 2019 32 128b/130b 128PCIe 6.0 2021 64 PAM-4/FLIT 256PCIe 7.0 2023 128 PAM-16/FLIT 512

2.3.3 Ethernet

Ethernet technology [17] is based on the Carrier Sense Multiple Access with
CollisionDetection (CSMA/CD) accessmethod. It operates at the physical layer
(Layer 1) and the data link layer (Layer 2) of the OSI model. The physical
layer handles the transmission and reception of raw data over the physical
medium, while the data link layer is responsible for framing, addressing, and
error detection.

One of the main advantages of Ethernet is its flexibility and scalability. It
can support various data rates, ranging from 10Mbps for older versions (e.g.,
10BASE-T) to 1 Gbps (Gigabit Ethernet) and beyond for modern implemen-
tations. This adaptability allows Ethernet to cater to a wide range of applica-
tions, from simple office networks to high-speed data centres andmultimedia
streaming.

When using Ethernet with FPGAs, designers face the challenge of imple-
menting the higher layers of the OSI model, namely the network layer (Layer
3) and transport layer (Layer 4). These layers are responsible for IP address-
ing, routing, and end-to-end communication. FPGA designsmust include logic
to handle IP addressing, packet forwarding, and any higher-level protocols
required for data exchange. This complexity can add overhead to the FPGA
design and require careful optimisation to ensure efficient data processing.

In FPGA-based systems, the communication between the FPGA and the
Ethernet physical layer typically involves a Media Access Control (MAC) core,
which is responsible for generating and interpreting Ethernet frames. The
MAC core interfaces with the external Ethernet PHY chip, which handles the

19

conversionbetween theMAC-level signals and the actual physical signals trans-
mitted over the Ethernet cable. In CPU-based systems, handling Ethernet in-
volves the integration of a Network Interface Controller (NIC) or Ethernet con-
troller. The NIC is a hardware component that interfaces the CPU with the
Ethernet medium. It manages low-level operations, such as frame reception
and transmission, packet encapsulation and decapsulation, and error check-
ing. The NIC communicates with the CPU through driver software that imple-
ments higher-level network protocols.

The CPU’s involvement in Ethernet communication extends beyond the
data link layer. It handles the network layer protocols (Layer 3), such as In-
ternet Protocol (IP), which involves tasks like IP address assignment, routing,
and packet forwarding. Additionally, the CPU manages transport layer proto-
cols (Layer 4), such as Transmission Control Protocol (TCP) andUser Datagram
Protocol (UDP), responsible for end-to-end communication and data flow con-
trol.

GigE Vision

Figure 2.9: A Structure of the Data Frame, Including Payload Data, HeaderInformation, and Ethernet Protocol Stack.

GigE Vision is a standard developed in 2006 by the Automated Imaging Asso-
ciation [18], which extends gigabit Ethernet to transport video data and con-
trol information to the camera efficiently. This standard benefits from the
widespread availability of low-cost standard cables and connectors, allowing
data transfer rates of up to 100 MPixels per second over distances of up to
100 meters.

GigE Vision comprises four essential elements. The control protocol fa-

20

cilitates camera control and configuration communication, while the stream
protocol governs the transfer of image data from the camera to the host sys-
tem, both running over UDP. A device discovery mechanism identifies con-
nected GigE Vision devices and acquires their internet addresses. GigE Vision
utilises Gigabit Ethernet (1000BASE-T) for data transmission, enabling a max-
imum data rate of 1 Gbps for real-time transfer of large image and video data
in industrial applications. It employs packet-based communication displayed
in Fig. 2.9, dividing images into smaller packets for efficient data transfer, en-
suring reliable transmission and minimal data loss. Moreover, many GigE Vi-
sion cameras support Power over Ethernet (PoE), receiving power through
the Ethernet cable, reducing installation overhead. GigE Vision supports both
asynchronous and synchronous triggers for precise image capture control.
Asynchronous triggers allow continuous image capture at a specified frame
rate, while synchronous triggers enable coordinated capture based on exter-
nal events for synchronised operation with other devices. Additionally, GigE
Vision cameras can be easily configured and accessed using the GigE Vision
Control Protocol (GVCP), providing efficient camera parameter adjustments
and image data retrieval. Overall, GigE Vision is a versatile and efficient inter-
face for industrial imaging applications, offering seamless data transmission
and easy camera control.

In many embedded vision applications, it is more practical to integrate the
FPGA system within the camera itself, allowing for image processing before
transmitting results to a host system using GigE Vision. To achieve real-time
operation, a dedicated device driver is used on the host system. This driver by-
passes the standard TCP/IP protocol stack for the video stream and employs
Direct Memory Access (DMA) transfers to transfer data to the application di-
rectly. By avoiding CPU overhead during video data handling, real-time per-
formance can be achieved effectively. This optimised data transfer scheme
ensures smooth and efficient communication between the camera and the
host system in GigE Vision applications.

2.3.4 Universal Serial Bus (USB)

USB has emerged as awidely used interface for connecting peripheral devices
to personal computers. Over the years, USB technology has evolved signifi-

21

Table 2.2: USB Versions, Bandwidth, Power Supply, and Specifications.
USB Version Bandwidth Power Supply Additional InformationUSB 1.0 1.5 Mb/s 5V (Max 500mA) Initial USB standardUSB 1.1 12 Mb/s 5V (Max 500mA) Enhanced data rateUSB 2.0 480 Mb/s 5V (Max 500mA) High-speed data transferUSB 3.0 5 Gb/s 5V (Max 900mA) SuperSpeed USBUSB 3.1 10 Gb/s 5V (Max 900mA) SuperSpeed+ USBUSB 3.2 20 Gb/s 5V (Max 900mA) SuperSpeed USB 10, 20 Gb/sUSB 4.0 40 Gb/s 5V (Max 900mA) Thunderbolt 3 compatible
cantly, supporting increasing link speeds from the initial 1.5Mb/s and 12Mb/s
to the current 20 Gb/s in the double lane configuration of USB 3.2 Gen 2. As a
result, USB has proven to be a viable and versatile interface between FPGAs
and SoCs (System-on-Chips) in various applications.

USB operates in a master-slave architecture, where there can be only one
host or master controller within a USB network, and the host controller ini-
tiates all communication. The communication protocol of USB is structured
into four layers: the application and system software interacts with the USB
pipe at the topmost layer, while the protocol layer handles packet manage-
ment. USB packets come in several types, such as Link Management Pack-
ets, Transaction Packets, Data Packets, and Isochronous Timestamp Packets.
These packets serve to exchange control and status information between the
host and the connected devices.

The Data Packet, which carries user data along with a 16-byte header, is
essential for transferring information between the host and the device. On
the other hand, the other packet types primarily facilitate control and status
exchanges. Any data transfer requires initiation by a Transaction Packet be-
fore actual data transmission occurs. To enable FPGA access to the USB bus,
an external PHY (Physical Layer) chip is necessary. This chip often provides a
first-in-first-out (FIFO) interface, which the FPGA can connect to through reg-
ular I/O ports. User logic is then required to implement the control logic and
interface with the application. While this FIFO interface might limit through-
put in certain scenarios, it does not pose any bottleneck for applications like
video streaming.

22

2.3.5 Mobile Industry Processor Interface (MIPI)

Figure 2.10: C-PHY and D-PHY with two lanes each. C-PHY makes it possibleto reach more than double the bandwidth per lane than D-PHY.
MIPI [19] is a serial interface standard developed in 2003 for interconnect-

ing components in mobile devices. MIPI comes in various versions, and one
of the widely used versions in mobile camera interfaces is MIPI CSI-2 (Cam-
era Serial Interface 2). The interface can consist of one or more data lanes,
each capable of transmitting a stream of image data. A separate clock lane
synchronises the data transmission, ensuring accurate data reception. MIPI
CSI-2 supports various data types, including RAW image data and metadata,
allowing it to accommodate different image sensor formats and data require-
ments. Furthermore, the concept of virtual channels enables themultiplexing
of multiple data types over the same physical data lanes.

MIPI CSI-2 utilises low-voltage differential signalling to transmit image data
from the camera sensor to the application processor. C-PHY and D-PHY are
two different physical layer specifications, and their usage depends on the
specific requirements of the devices shown in Fig. 2.10. D-PHYprovides higher
data rates and is capable of reaching extremely high speeds, making it suit-
able for applications that require substantial data throughput. D-PHY sup-
ports multiple data lanes (typically 1 to 4 lanes), and it is commonly used in

23

devices with high-resolution imaging requirements, such as high-end smart-
phones and cameras. On the other hand, C-PHY, or Combo PHY, is a combi-
nation of MIPI C-PHY and MIPI D-PHY technologies. It offers a more power-
efficient solution than D-PHY, making it ideal for power-sensitive mobile de-
vices. C-PHY leverages both a low-power, single-ended signalling mode and
a high-speed, differential signalling mode, providing a balance between data
transfer rates and power consumption. It uses fewer wires compared to D-
PHY, simplifying the physical design of mobile devices and potentially reduc-
ing costs.

MIPI CSI-2 comes with certain drawbacks that may impact its applicabil-
ity. Firstly, its physical image data transfer (D-PHY) is limited to shorter cable
lengths, typically not exceeding 20 cm, which can be restrictive for certain in-
dustrial applications. Additionally, the lack of a standardised plug for MIPI
CSI-2 means that sensor/camera modules must be individually and propri-
etary connected. Moreover, the absence of a standardised driver and soft-
ware stack requires custom adjustments for each sensor or camera module
to work with the CSI-2 driver of a specific System-on-Chip (SoC) through a pro-
prietary I²C driver as a Video4Linux sub-device.

2.3.6 FPGA Mezzanine Card (FMC)

Figure 2.11: FMC Low Pin and High Pin Count Sockets.

24

The FMC interface is a high-speed, versatile standard for connecting exter-
nal modules to FPGAs (Field-Programmable Gate Arrays). The FMC standard
encompasses two form factors: single-width and double-width. Single-width
supports one connector, while double-width caters to applications needing
more bandwidth, front panel space, or larger PCB areas and supports up to
two connectors, offering designers flexibility for optimising space and I/O re-
quirements. Two connector types, Low Pin Count (LPC) with 160 pins andHigh
Pin Count (HPC) with 400 pins, displayed in Fig. 2.11. Both support single-
ended and differential signalling up to 2 Gb/s, with signalling to an FPGA’s
serial connector at up to 10 Gb/s. LPC offers 68 user-defined single-ended sig-
nals or 34 differential pairs, along with clocks, a JTAG interface, and optional
I2C support for base Intelligent Platform Management Interface (IPMI) com-
mands. HPC provides 160 single-ended signals (or 80 differential pairs), ten
serial transceiver pairs, and additional clocks. HPC and LPC connectors use
the same mechanical connector, differing only in populated signals, enabling
compatibility between them.

2.3.7 Summary

Table 2.3: Image Sensor Interfaces Specifications.
Interface Interface

Type Bandwidth Max Cable
Length

Max
Frequency

Bit
Depth

Power
(W)PCIe Serial Up to 32 Gbps 0.2 Metres 100 MHz Varies 75 WGigE Vision Serial Up to 1 Gbps 100 Metres 125 MHz 8/10/12/14/16 bit 12 WCamera Link Parallel Up to 800 Mbps 10 Metres 85 MHz 8/10/12/14 bit 6 WMIPI CSI-2 Serial Up to 10 Gbps 0.2 Metres 250 MHz 8/10/12/14/16/24 bit 1.2 WFireWire Serial Up to 800 Mbps 4.5 Metres 400 MHz 8/10 bit 6 WCoaXPress Serial Up to 12.5 Gbps 100 Metres 250 MHz 8/10/12 bit 24 WUSB4 Serial Up to 40 Gbps 2 Metres 100 MHz 8-32 bit 7.5 W10 GigE Serial Up to 10 Gbps 100 Metres 156.25 MHz 8/10/12/14 bit 15 WThunderbolt 4 Serial Up to 40 Gbps 3 Metres 648.91 MHz 8/10 bit 9.9 WFMC Both Up to 40 Gbps 1 Metre 156.25 MHz 8/10/12/14/16 bit 6.6 W

Table 2.3 provides a summary of common image sensor interfaces utilised
in various imaging applications. These interfaces offer diverse specifications
in terms of bandwidth, maximum cable length, frame rate, bit depth, and
power consumption, catering to specific imaging needs and requirements.
USB4, Thunderbolt and USB offers the highest bandwidth at 40 Gbps while
CoaXPress and GigE variants supports the longest cable length at 100 meters
which is ideal for distant camera setups. USB provides the highest bit depth

25

options, ensuring better colour precision. MIPI CSI-2 stands out as the most
power-efficient interface, consuming only 1.2 W, which is ideal for mobile ap-
plications, while CoaXPress requires the most power at 24 W. Although, USB4
can supply up to 240W to cameras or other devices. The only two parallel
interfaces are FMC and Cameralink.

2.4 Hardware Architectures

In recent years, the demand for flexible, energy-efficient and higher perfor-
mance processors has continuously grown. This has pushed designers to de-
velop novel processing architectures to facilitate requirements. This section
introduces popular processing hardware used within vision applications.

2.4.1 Multi-Core Central Processing Unit (CPU)

Figure 2.12: The CPU architecture consists of multiple cores, which containcomponents such as registers, caches, ALU and interconnects.

26

The CPU observed in Fig. 2.12 is an integrated circuit responsible for execut-
ing instructions and performing arithmetic, timing, logic and I/O operations.
The CPU architecture involves the design and organisation of various com-
ponents to optimise performance, power efficiency, and instruction execu-
tion. The main components are registers, arithmetic logic units (ALUs), con-
trol units, cache memory, and instruction pipelines. Registers are small, high-
speed storage units within the CPU used for temporarily holding data and in-
termediate results during computation. ALUs are responsible for performing
arithmetic and logic operations, such as addition, subtraction, NOT and OR.
The control unit manages the flow of instructions and data within the CPU,
fetching instructions from memory, decoding them, and coordinating their
execution. CPU cache memory is used to store frequently accessed data, re-
ducing the time taken to retrieve data from main memory.

Reduced Instruction (RISC) and Complex Instruction Set Computer (CISC)
are two CPUmicroarchitecture approaches. RISC architectures prioritise sim-
plicity and efficiency by employing a smaller set of basic instructions. This
streamlined design typically leads to faster and more predictable execution,
making RISC processors well-suited for power-constrained devices and appli-
cations where speed is critical. In contrast, CISC architectures, exemplified by
x86, feature a diverse and extensive set of complex instructions designed to
reduce the number of instructions required to perform tasks. While this com-
plexity can provide convenience for programmers, it often results in more
intricate hardware, potentially impacting performance and energy efficiency.

Significant research is put into improving the execution speed of instruc-
tion pipelines. The pipeline breaks down the execution of instructions into
multiple stages, allowing different instructions to be processed simultane-
ously. Each stage of the pipeline handles a specific task, such as instruc-
tion fetch, decode, execute, and write back. This pipelining process increases
the CPU’s instruction throughput and overall performance. CPU architecture
also includes features like branch prediction, speculative execution, and out-
of-order execution. Branch prediction predicts the outcome of conditional
branches to keep the pipeline filled with useful instructions. Speculative exe-
cution allows the CPU to execute instructions before it is confirmed that they
are needed, further improving performance. Out-of-order execution enables
the CPU to execute instructions in a different order to optimise resource util-

27

isation.
In the past decade, single-core processors have now been outpaced by the

shift to multi-core designs. Traditionally, speedup was achieved by increasing
the processor’s clock speed and decreasing the transistor size to pack more
into the silicon area. However, the power density required grew at a faster
rate than the frequency which entailed power problems exacerbated by com-
plex designs attempting to extract extra performance from the instruction
stream. This led to designs that were complex, unmanageable, and power-
hungry. However, chip designers introduced multiple cores onto a single die
and leveraged parallel programming to continue pushing for more perfor-
mance. The primary advantage to multi-core systems is the raw performance
increase fromextending the number of processing cores rather than clock fre-
quency, which translates into slower growth in power consumption. This can
be a significant factor in embedded devices that operate on a power budget,
such as mobile devices.

General-purpose multi-cores are becoming necessary in real-time digital
signal processing. One general-purpose core would control various signals
and watchdog functions for many special-purpose ASICS as part of a system-
on-chip. This is primarily due to the variety of applications and functions re-
quired. Nevertheless, multi-Core processors give rise to new problems and
challenges. As more processing cores are integrated into a single chip, power
and temperature are the primary concerns that can increase exponentially
with more cores. Memory and cache coherence is another challenge due to
the distributed L1 caches and, in some cases, L2 caches which need to be
coordinated.

2.4.2 Graphics Processing Unit (GPU)

The GPU is a specialised hardware architecture initially used for graphics ren-
dering. However, GPUs have undergone significant power and cost advance-
ments, which have captured the attention of both industry and academia.
Designers have been exploring the potential of GPUs to accelerate large-scale
computational workloads.

The architecture of GPUs is designed with a focus on throughput optimi-
sation, allowing for efficient parallel computation of numerous operations.

28

Figure 2.13: The GPU architecture comprises distinct elements, includingStreaming Multiprocessors (SMs), Cache Hierarchy, and Compute Cores. SMsserve as the processing engines responsible for executing parallel threads,Cache Hierarchy optimises data access by efficiently managing on-chip mem-ory caches, and Compute Cores perform complex computations and shaderoperations.
Fig. 2.13 illustrates the high-level GPU architecture. The GPU comprises mul-
tiple StreamingMultiprocessors (SMs) that function independently, and these
SMs are organised into multiple Processor Clusters (PCs). Each SM incorpo-
rates a layer-1 (L1) cache with each core. Typically, each SM possesses its
dedicated layer-1 cache, and multiple SMs share a layer-2 cache before ac-
cessing data from the global GDDR-5 memory. Newer GPU models integrate
tensor cores, which efficiently computematrices calculations, enhancing their
performance in deep learning tasks.

The GPU architecture, initially tailored for 3D graphics rendering, involves
a streamlined pipelinewith distinct stages. It commenceswith vertex process-
ing, transforming 3D geometric data, followed by primitive assembly to group
vertices into primitives. Rasterisation then translates these into screen pixels
or fragments, and fragment processing adds attributes like colours and tex-

29

tures. Finally, the pixel output stage writes processed fragments to the frame
buffer, resulting in the rendered image on the screen. The highly parallel na-
ture of the graphics pipeline in GPUs makes them exceptionally well-suited
for image processing tasks. Image processing often involves manipulating
and analysing large amounts of pixel data concurrently, making it a naturally
parallelisable task. Leveraging the parallel processing capabilities, image pro-
cessing algorithms can be accelerated by providing higher frames per sec-
ond performance for tasks such as image filtering, edge detection, and object
recognition. Additionally, GPU optimised memory hierarchy ensures faster
access and storage of larger images, kernels and intermediate data.

There remain drawbacks for GPUs, primarily if they are intended to be
used as general-purpose machines. Firstly, the limitations of adaptability and
context switching make them less suitable for general-purpose computing
tasks. Simple calculations which do not utilise the parallelism are inhibited
by lower clock speeds. Communication between the CPU and GPU can intro-
duce bottlenecks and decrease the GPU throughput, especially when waiting
for results from the CPU. Memory capacity and bandwidth would also affect
GPU performance; for example, an image processing application must wait
for the image data to be transferred from the main memory, further delay-
ing the runtime. Lastly, GPUs cannot operate independently without support
from a CPU, which contributes to more power consumption from idling.

2.4.3 Field-Programmable Gate Array (FPGA)

Field-Programmable Gate Arrays are versatile integrated circuits which offer
direct hardware programmability for diverse applications. They have gained
prominence due to their reconfigurability, making them highly advantageous
compared to fixed processing architectures such as ASICs. These features
enable shorter time-to-market by allowing prototyping and late-stage design
modifications. The FPGA architecture, as depicted in Fig. 2.14, comprises a
matrix of configurable logic blocks (CLBs) containing a combination of look-
up tables (LUTs), shift registers (SRs), and multiplexers (MUXs). These compo-
nents are interconnected through programmable high-bandwidth pathways
and are surrounded by I/O ports.

The fine-grained nature of FPGAs empowers designers to exploit both spa-

30

Figure 2.14: The FPGA Architecture contains Configurable Logic Blocks (CLBs),Interconnects, Programmable Routing, and I/O Resources components whichdefine the Versatile and Reconfigurable Nature.
tial and temporal parallelism in their designs, resulting in enhanced perfor-
mance. In image processing applications, algorithms can be tailored to oper-
ate on individual pixels or groups of pixels in parallel. Temporal parallelism
can be achieved using techniques like pipelining, where separate processors
work on successive stages of data, allowing concurrent processing and bet-
ter throughput. Spatial parallelism, however, involves partitioning the image
frame and processing each segment independently using separate proces-
sors.

FPGAs allow seamless integration of I/O, such as image sensors, enabling
pixel data to be streamed directly into processing units without latency. Data
canbe routed efficiently to other embeddedprocessorswithout externalmem-
ory access. Block RAMs (BRAMs) within the FPGA enable exploiting data local-
ity in vision kernels by keeping critical data on-chip. However, themain limita-
tion in image processing applications often stems from external memory (E.g.
DDR4 RAM) read/write operations, which can impact overall performance.

Advanced extensible interface (AXI) is a standardprotocol for efficient com-

31

munication between IP blocks within an FPGA design. It follows the Advanced
Microcontroller Bus Architecture (ARMAMBA) specification, ensuring compat-
ibility with ARM-based processors and systems-on-chip (SoCs). The AXI proto-
col supports separate read and write channels, enabling simultaneous data
transactions in both directions. It also features burst transfers, allowing mul-
tiple data transfers within a single transaction to enhance data throughput.

Despite their advantages, FPGA development requires expertise in hard-
ware descriptor languages (HDL), such as VHDL/Verilog. This steep learn-
ing curve can be a challenge for new developers accustomed high-level lan-
guages and instruction based architectures. In comparison to ASICs, the sup-
port functions and additional reconfigurable logic and power consumption
overhead, making power efficiency considerations important during the de-
sign phase. FPGAs typically have limited on-chip memory compared to GPUs,
which can have limitations for applications that require largememory spaces.
Overall, FPGAs offer a powerful platform for image processing tasks, but their
effective use requires careful consideration of design constraints and optimi-
sation strategies.

2.4.4 Application-Specific Integrated Circuits (ASICs)

ASICs are a specialised type of Very Large Scale Integration (VLSI) technology
where integrated circuits are designed specifically for a particular application
domain. This involves custom designing at the transistor level to optimise
the circuit for performance and silicon area. There are several advantages of
opting for an ASIC implementation over other general-purpose accelerators.
The custom designed nature of ASIC logic allows designers to create tightly
integrated applications, resulting in better performance, reduced power con-
sumption, and minimised silicon usage. ASICs come with intrinsic trade-offs
listed below:

• Fixed Design: ASICs are designed for specific applications and lack flex-
ibility compared to general-purpose processors. Once fabricated, it is
challenging and costly to make modifications or upgrades to their func-
tionality.

• HighDesign Cost: Designing and prototyping involves significant exper-
tise and time, leading to higher initial development costs.

32

• Long Development Timeline: Creating a custom ASIC requires exten-
sive expertise and significant time to design, verify, and manufacture.

Despite these drawbacks, the per-chip manufacturing cost becomes sig-
nificantly lower during mass production, rendering ASICs more economically
viable for high-volume production. The following sections discuss the various
types of ASICS targeting specific workloads:

Vision Processing Units (VPUs)

Figure 2.15: VPU Architecture consists of an array of processing elements withhorizontal and vertical buffers for efficient image processing.

VPUs are a class of ASIC designed to alleviate the heavy processing load on
the central processor by accelerating workload-specific tasks. VPUs shown in
Fig. 2.15 have a distinct hardware design that focuses on accelerating specific
types of computations, such as deep learning inference, video encoding/de-
coding, and image processing. They often incorporate dedicated execution
units, tensor cores, or specialised instructions to accelerate these tasks effi-
ciently.

VPUs employ hardware architectures and software frameworks tailored
to exploit parallelism and optimise performance for these tasks. GPUs, while

33

also capable of accelerating AIworkloads, are designed to handle awide range
of general-purpose graphics and compute tasks, making themmore versatile
but potentially less optimised for specific workloads.

VPUs also prioritise energy efficiency, aiming to deliver better performance
per watt over other accelerators. They employ techniques like low-power ex-
ecution units, reduced precision compute, and power management features
to minimise energy consumption. GPUs, on the other hand, focus more on
delivering absolute performance, often consuming more power in exchange
for higher computational capabilities. In addition, VPUs often have specialised
APIs or libraries that target specific applications or frameworks, enabling ef-
ficient execution of AI models or video codecs. However, the programming
ecosystem for VPUs is limited in comparison to general-purpose architectures.

Neural Processing Units (NPUs)

NPUs initially emerged in embedded devices as efficient AI inference accel-
erators specifically designed to manage the computational demands of ma-
chine learningworkloads. The initial NPU architecture integrated high-density
MAC arrays such as 2D GEMM or 3D systolic arrays since the majority of the
computations are found within convolutional layers, which involve significant
matrix multiplications. As CNNs continued to become increasingly complex
with higher depth and many layers configurations, NPU has now optimised
the MAC array structures to ensure enhanced modularity and scalability. Fur-
thermore, newer features such as:

• Fused operations
• Sparsity acceleration
• Unified High Bandwidth Memory
• Multi-level array partitioning
• Mixed Precision Support
NPUs have expanded their capabilities for other neural network architec-

tures. This includes RNN/LSTM structures, targeting for audio and natural
language processing, and transformers.

34

Neuromorphic Hardware

Neuromorphic architectures are a type of hardware developed to mimic the
structure and function of the human brain’s neural networks. These archi-
tectures aim to replicate the principles of neural function in their operation,
seeking inspiration from biological systems. By incorporating concepts such
as weighted connections, activation thresholds, short and long-term potenti-
ation, and inhibition, neuromorphic architectures aim to perform distributed
computation in a way that resembles how the human brain processes infor-
mation.

The key objective of neuromorphic architectures is to achieve efficient and
parallel processing of data by leveraging the inherent capabilities of neural
networks. These architectures often involve the use of spiking neural net-
works, where information is transmitted through spikes or pulses, similar
to how neurons communicate in the brain. This approach allows for event-
driven and energy-efficient computation, making neuromorphic architectures
suitable for various tasks, including sensory data processing, pattern recog-
nition, and complex decision-making. Despite their promising advantages,
they face challenges, including complexity in design and implementation, lim-
ited applicability to specific tasks, scalability issues, lack of standardisation,
and difficulty in implementing learning and adaptation mechanisms. Balanc-
ing energy efficiency and performance is another challenge, and commercial
availability remains limited.

ASIC Summary

Table 2.4: ASICs and Their Specifications
Manufacturer ASIC Type Clock

(MHz)
Power
(W)

Process
Node

Applications

Intel Movidius Myriad X VPU 1050 2.5 16nm Edge devices, AI inference
Google TPU TPU 1800 10 7nm Machine learning accelerators
ARM Ethos-U55 NPU 1000 1 7nm IoT devices, edge computing
Huawei Kirin NPU 820 1 7nm Smartphones, AI applications
Graphcore IPU VPU 500 252 16nm AI workloads, data centres
Intel Neural Compute Stick NPU 700 1.5 28nm Machine translation, NLP, Edge AI

35

Table 2.4 offers a concise overview of various ASICS. These ASICs serve di-
verse purposes, from machine learning acceleration to edge computing and
AI inference. Notable entries include the Intel Movidius Myriad X, known for
its use in edge devices, and the Google TPU, a powerful tensor processing
unit designed for machine learning tasks. The ARM Ethos-U55 and Huawei
Kirin ASICs are optimised for IoT devices and smartphones, all while operat-
ing at low power consumption. Graphcore’s IPU, on the other hand, stands
out with its high power requirements, tailored for AI workloads in data cen-
tres. Lastly, the Intel Neural Compute Stick focuses on applications such as
machine translation and natural language processing.

2.4.5 Heterogeneous Architectures

Figure 2.16: Concept Heterogeneous Architecture which integrate multiplespecialised processing units onto a interconnected silicon chip.

Heterogeneous architectures have recently gained significant attention and
mainstream appeal in various application domains. These architectures inte-
grate different types of accelerators, including CPUs, GPUs, NPUs, and FPGAs,
into a single compute fabric, observed in Fig. 2.16. Currently, commercial het-
erogeneous chips only contain a combination of CPU-GPU-NPU [20]. The pri-
mary objective of heterogeneous architectures is to accelerate complex tasks
by allocating specific operations to the most suitable specialised cores that

36

can process them efficiently.
One of the key challenges in utilising heterogeneous systems lies in algo-

rithm design. Designing algorithms that can effectively leverage the capabili-
ties of different accelerators is crucial. It requires careful consideration of the
characteristics and strengths of each accelerator, as well as the partitioning
and mapping of computational tasks to the appropriate cores. Algorithm de-
signers need to analyse the computational requirements, data dependencies,
and parallelism inherent in the application to optimise the workload distribu-
tion across different cores.

Partitioning and mapping refer to the process of breaking down the com-
putational tasks and mapping them onto the available cores. It involves con-
sidering the data dependencies, communication overhead, and resource util-
isation to ensure efficient execution. Additionally, scheduling tasks across dif-
ferent cores, managing synchronisation between them, and optimising inter-
connect requirements are critical aspects of achieving optimal performance
in heterogeneous architectures.

The programming environment for heterogeneous architectures can be
complex anddiverse. Each acceleratormayhave its ownprogrammingmodel,
APIs, and language extensions, making it challenging to develop applications
that can fully exploit the capabilities of all accelerators. Furthermore, the avail-
ability of libraries and software tools may vary across different compute ele-
ments due to differences in instruction set architectures. This can lead to
binary incompatibility and limit the portability of applications across different
accelerators. Evaluating the performance of heterogeneous architectures re-
quires comprehensive performance evaluation techniques. Benchmarks and
performance metrics need to consider the characteristics of the application,
workload distribution, and communication patterns to provide an accurate
assessment of the system’s capabilities.

37

2.4.6 Summary

Table 2.5: Hardware Architecture Specification Summary.
Compute Type Execution ParadigmArchitecture Flexibility Temporal Spatial Latency Dataflow Instruction

CPU General ✓ ✓ Medium × ✓

GPU General ✓ ✓ High × ✓

FPGA General ×(1) ✓ Low ✓ ×
ASIC Fixed × ✓ Low ✓ ×

(1) FPGA’s can support temporal compute, however impractical considering overhead and effectiveness.

The table 2.5 provides a concise overview of various hardware architectures
used in compute operations. CPUs and GPUs offer general-purpose flexibil-
ity, supporting temporal and spatial computations with medium and high la-
tency, respectively, while following an instruction-based execution paradigm.
FPGAs, though generally flexible, are better suited for spatial computations,
with limited practicality for temporal tasks due to overhead and effectiveness
constraints. They employ a dataflow execution paradigm. In contrast, ASICs
are fixed-function hardware designed for specific spatial computations, offer-
ing low latency and following a dataflow execution paradigm.

2.4.7 Software Ecosystem

This section explores the software domain employed for targeting hardware
architectures and software interfaces. Optimised libraries such as OpenCV,
High-Level Synthesis, and Domain-Specific Languages assume a role in bridg-
ing the gap between hardware and software application development.

High-Level Synthesis (HLS)

High-level synthesis (HLS) is a tool that enables hardware designers to use a
high-level programming language, such as Python, C or C++, to create hard-
ware designs. This is in contrast to traditional hardware design methods,
which involve manually writing hardware description languages (HDLs) such
as VHDL or Verilog. HLS tools take in the high-level source code and auto-
matically generate the corresponding HDL code. This can greatly simplify the

38

design process, making it more accessible to non-hardware design experts.
Thismeans that designers can focus on the functionality of the design and not
worry about low-level implementation details. HLS tools also perform optimi-
sation to improve the performance and resource utilisation of the generated
hardware. This can result in more efficient designs that use fewer resources
and run faster.

Another benefit of HLS is that it allows for faster design iteration. As the
design can be expressed in a high-level programming language, it can be eas-
ily modified and re-synthesised to see the effects of the changes. This can
greatly speed up the design process and allow for faster time-to-market. In
addition, FPGAs are often selected for systemswhere time tomarket is critical
in order to avoid lengthy chip design and manufacturing cycles. The designer
may accept the increased performance, power, or cost in order to reduce de-
sign time. Modern HLS tools put this trade-off into the hands of the designer;
with more effort, the quality of the result is comparable to handwritten RTL
(register transfer language). ASICs have high manufacturing costs, so there is
a lot of pressure for designers to achieve success on the first attempt. Design
iterations can quickly and inexpensively be done without hugemanufacturing
costs.

However, these tools comewith a set of drawbacks. For instance, the initial
learning curve can be steep, particularly for those new to hardware design, as
they require a solid understanding of both high-level programming and hard-
ware optimisation techniques. While HLS tools automate the allocation of
hardware resources based on the provided code, they may not always yield
the most efficient designs for complex projects compared to manual, fine-
tuned hardware descriptions. One of the key challenges in using HLS tools
is accurately predicting the performance of the generated hardware. Factors
such as memory access patterns, data dependencies, and the overall archi-
tecture can significantly impact performance, making it challenging to esti-
mate how the synthesised hardware will behave. Moreover, debugging HLS-
generated designs can be complex. Traditional software debugging methods
are often insufficient, as hardware-related issues might not manifest in the
same way as in software. This can prolong development cycles and hinder
the identification of issues.

39

Domain-Specific Languages (DSL)

Domain-specific languages (DSLs) are programming languages designed to
address specific problem domains rather than being general-purpose lan-
guages. DSLs offer higher-level abstractions and syntax tailored to a particu-
lar application area, allowing users to express domain-specific conceptsmore
concisely and intuitively. Unlike general-purpose languages, DSLs enable non-
experts to work effectively within a specific domain, as they are more focused
on the domain’s requirements and semantics. DSLs come in two main types:
external DSLs, which are standalone languages distinct from the host lan-
guage (e.g., Cal Actor Language [21]), and internal DSLs, which are embedded
within a general-purpose language using its syntax and tools (e.g., Halide [22]).
The use of DSLs can lead to improved productivity, reduced error rates, and
better code maintainability in specific application areas.

Libraries & Frameworks

Optimised libraries such as OpenCV [23] are essential tools used to develop
vision and deep-learning applications. These libraries offer a comprehensive
collection of pre-built algorithms and functions for a wide range of image-
related tasks. Their significance lies in the substantial time and resource sav-
ings they provide, enabling developers to utilise tried-and-tested algorithms,
thus reducing development efforts and benefiting from community-driven
improvements. Moreover, optimised libraries ensure cross platform com-
patibility, supporting various programming languages and platforms. They
are continually updated to harness advancements in hardware and software,
making them key for efficient and adaptable image processing.

Deep learning frameworks such as Pytorch [24] offer abstraction and sim-
plification, allowing developers to focus on high-level tasks. Frameworks en-
compass a comprehensive suite of support programs, compilers, code librar-
ies, toolsets, and application programming interfaces that provide a cohesive
environment that streamlines the development of systems. Therefore, frame-
works facilitate rapid prototyping and integration with other tools.

40

2.5 Conclusion

In conclusion, this section provides an in-depth overview of the imaging pipe-
line and its fundamental components, establishing the groundwork for the
subsequent chapters. It encompasses typical operations present in eachpipeline
stage, which will used as implementation examples. Furthermore, the sec-
tion delves into diverse hardware platforms such as CPUs, GPUs, VPUs, and
FPGAs, each offering distinct attributes that can accelerate algorithms. To
leverage these hardware capabilities, a range of tools and methodologies are
introduced, which include high-level synthesis. In the next chapter, the state-
of-the-art study on heterogeneous architectures and optimisation strategies
related to image processing are discussed.

41

3 State-of-the-Art

This chapter surveys the literature relevant to the research conducted in this
thesis. The work covered in this section spans a wide range of topics, includ-
ing image processing, CNNs, hardware, algorithmic, and domain-specific op-
timisation approaches. Additionally, the chapter reviews proposed hetero-
geneous platforms and partitioning methods. A critical analysis of recent re-
search publications is performed, and potential areas for exploration are dis-
cussed throughout the section.

3.1 Hardware Targeting Image Processing

This section introduces imaging algorithms implemented on various architec-
ture configurations found within the literature. Heterogeneous architectures,
which integrate diverse computing elements like CPUs, GPUs, FPGAs, and spe-
cialised accelerators, have emerged as a pivotal paradigm in modern com-
puting systems, aiming to achieve higher performance and energy efficiency.
These architectures cater to the diverse computational needs such as paral-
lelisation or pipelining for tasks involving deep learning to signal processing.
In addition to the literature on supporting algorithms that are tailored to ex-
ploit the unique capabilities of these heterogeneous components. Further-
more, various optimisation methods are explored for each hardware.

42

3.1.1 Multi-Core CPU Architectures

While accelerators with numerous cores such as GPUS, have traditionally out-
performed CPUs in image processing due to core count, the recent introduc-
tion of many-core CPUs boasting thousands of cores has become more com-
petitive in runtime performance. Furthermore, considering the initialisation
and memory latency required for GPUs, CPUs may complete kernels within
that timeframe [25–27].

Many-core co-processors, relying on simple hardware, place substantial
demands on software programmers, while their use of in-order cores strug-
gles to tolerate long memory latencies. In addressing these challenges, work
has been done to explore decoupled access/execute (DAE) mechanisms for
tensor processing. One software-based method is to use naïve and systolic
DAE, complemented by a lightweight hardware access accelerator to enhance
area-normalised throughput. This method has shown 2 − 6× performance
improvement on a 2000-core CPU heterogeneous system compared to an
18-core out-of-order CPU baseline [28]. Executing fundamental image pro-
cessing operations, such asWinograd-based convolution, onmany-core CPUs
(Intel Xeon Phi), has shown comparable performance for 2D ConvNets. Addi-
tionally, it has demonstrated 3 × −8× times better runtime performance for
3D ConvNets compared to the best GPU implementations [29].

3.1.2 CPU-GPU Architectures

The CPU-GPU architecture is a widely adopted approach to implementing of
complex image processing algorithms. The architecture leverages many sim-
ple processing cores, which are efficient in executing parallelised tasks. The
CPU is typically responsible for orchestrating the high-level control flow and
task management allocation to the GPU. Many works developing image pro-
cessing algorithms onGPUs [30–32] have exhibited a 10 ∼ 20x speedup in run-
time compared to single CPU implementations. In real-time imaging, works
such as optical flow [33] and edge-corner detection [34] were evaluated for
their algorithmic performance on GPUs and FPGAs. The results observed
show that GPUs slightly outperform FPGAs by utilising large amounts of data
parallelism and hiding latency. Dynamic thread scheduling on the GPU hides

43

Figure 3.1: Generic Soft Processor Architecture on Programmable Logic.
memory latency by swapping threads andmakingmemory requests with oth-
ers, as long as there are enough threads to keep the process continuous. In
addition, easy programmability of GPUs supports software debug iterations
which involve fast edit/compile/execute cycles compared to the much more
time consuming FPGA [35].

3.1.3 CPU-FPGA Architectures

FPGA:

FPGAshavebeenutilised for imageprocessing in order to leverage their unique
architectural characteristics, such as parallelism, reconfigurability, and low la-
tency. These features enable FPGAs to excel in tasks that demand real-time
analysis of image data and require lower power consumption [36].

One major drawback of using FPGAs for image processing is the need to
primarily use fixed-point arithmetic. While FPGAs can handle floating-point
arithmetic, it often demands too many resources, especially for parallel pro-
cessing. Vision research typically relies onfloating-point algorithms, and adapt-
ing them to fixed-point requires a detailed analysis to determine necessary

44

precision at each stage and to work within the FPGA’s resource limits [37].
When compared directly to ASIC devices, disregarding cost and design time-
lines, FPGA implementations are generally less efficient due to the configu-
ration circuitry overhead, which includes I/O and the required SRAM cells to
store the current design. This results in larger device sizes and higher power
consumption. ASIC design processes also enable circuitry optimisation for
faster clock speeds than those achievable on FPGAs [38].

CPU-FPGA:

Historically, these two components operated independently, each catering to
its own application domains. However, in recent years, manufacturers have
recognised the complementary strengths of CPUs and FPGAs. This has led to
the development of integrated systems, which can be split into two categories,
which are soft or hard processors. A soft processor is realised using the pro-
grammable logic resources of an FPGA. It’s essentially a processor described
in a hardware description language, such as VHDL or Verilog, which is then
synthesised andmapped onto the FPGA’s logic blocks. This design offers flex-
ibility, allowing designers tomodify the architecture, add custom instructions,
or adjust interfaces as needed, with XilinxMicroBlaze [39] and Intel Nios V [40]
being notable examples. In contrast, a hard processor is a physical processor
core embedded directly into the FPGA silicon which is optimised and hard-
wired for better performance and efficiency. The ARM Cortex cores found in
newer Xilinx’s Zynq FPGAs [41] are typically connected to the programmable
logic elements through an AXI (Advanced eXtensible Interface) protocol for
efficient data transfer and communication.

Initially, soft CPUswere utilised for pre-processing, task scheduling, and re-
sourcemanagement. However, collaborative execution, where tasks are com-
puted by both accelerators, have emerged as a prominent approach for in-
creasing application performance, as demonstrated in the literature [42–44].
In image processing, soft processors have been shown to be more energy ef-
ficient and have comparable runtimes than their counterpart discrete proces-
sors for low-high complexity algorithms, which is shown in the works [45–47].
The performance gains extend into the deep learning domain such as CNNs
are presented in literature [48–51].

45

Table 3.1: Energy and Runtime Speedup of CPU-GPU-FPGA heterogeneous ar-chitecture implementations compared to single GPU. The Table only includesworks where algorithms are partitioned and processed on all accelerators.
Work Heterogeneous

Platform
Partitioning
Strategy

Algorithms Energy
Gain

Runtime
Speedup

Hyungmin C,
etal [52]

GPU+CPU ARM+P100 Element-wise Long
Short-term
Memory

∼0.34x ∼4.2x
FPGA Zync

Ultrascale
Hosseinabady M,

etal [53]
GPU+CPU ARM+Jetson TX1

Element-wise
Histogram ∼2.29x ∼1.79x

FPGA Virtex-7
Zync

Ultrascale

Dense Matrix-Vector
Multiplication ∼1.19x ∼1.48x

Sparse Matrix-Vector
Multiplication ∼1.23x ∼1.25x

Yuexuan T,
etal [54]

GPU+CPU ARM+Jetson TX2 Hybrid LeNet-5
N=16 ∼2.11x ∼1.3xFPGA Nexys Artix-7

Carballo-Hernandez,
etal [55]

GPU+CPU ARM+Jetson TX2
Layer-Wise

SqueezeNet Fire ∼1.34x ∼1.01x
FPGA Cyclone-10

GX
MobileNet V2 Bottleneck ∼1.55x ∼1.26x

Shufflenet V2 Stage ∼1.39x ∼1.35x
Sumeet N,
etal [56]

GPU+CPU ARM+A100 Grouped
Layer-Wise

ResNet-18 ∼1.14x
-FPGA Xilinx Alveo

U280
ResNet-50 ∼1.08x
VGG16-bn ∼1.12x

In summary, hard processors typically outperform soft processors in both
speed and resource utilisation due to their independence from FPGA fab-
ric speed and separate chip placement, resulting in enhanced clock speeds
and efficient data path designs. Soft processors excel in power efficiency and
adaptability, catering to scenarios prioritising energy-conscious designs and
dynamicmodifications during rapid prototyping anddevelopment stages. The
architectural distinctions align each processor type with specific application
requirements within FPGA-based computing landscapes.

3.1.4 CPU-GPU-FPGA Architectures

FPGAs offer the advantage of direct hardware mapping for efficient imple-
mentation of CNNs [57], but they are often constrained by limited on-chip
resources [58]. The complexity and size of state-of-the-art CNNs often ex-
ceed the available logic and memory resources on a single FPGA chip. To
mitigate this limitation, a heterogeneous approach can be employed where
different layers of the CNN are mapped onto both FPGA and GPU platforms.
This leverages the FPGA’s efficiency for specific layers while utilising the GPU’s
computational power for more complex layers, thereby creating a balanced

46

and optimised system.
Recent work into partitioning and executing algorithms onto heteroge-

neous CPU-GPU-FPGA architectures has been explored in the literature, col-
lected in Table 3.1. The platforms category records the combination of accel-
erators that compose the heterogeneous platform in which the algorithm has
been distributed across. The results for energy gain and runtime speedups
are derived from comparing the algorithm executed on a single GPU. Parti-
tioning strategy refers to the level of detail at which operations are divided
on a heterogeneous platform. In a coarse-grained implementation, entire al-
gorithms or large functional blocks are distributed across different proces-
sors within the system. Conversely, a fine-grained implementation maps in-
dividual components or layers of an algorithm to specific processors, allowing
for more targeted optimisation and resource utilisation. Across all studies, a
range of 1 ∼ 4× speedup and 1 ∼ 2.3× energy improvement is observed
from various partitioning techniques. The key areas identified from all works
are that the limiting factors for performance are communication latency, re-
source availability, coarse partitioning strategies and limited optimisations. In
all works, CNN algorithmswere implemented partially (e.g., Convolution Layer
Only) or did not pass data to other accelerators, therefore not utilising true
heterogeneity.

3.2 ASIC Architecture

ASICs are highly efficient because they are purpose-built and don’t require
additional support hardware. They integrate all necessary components on a
single chip, minimising external dependencies and reducing overall system
complexity, making them ideal for streamlined and dedicated image process-
ing tasks [59, 60]. VPUs have been shown to achieve similar performance to
reference CPUs, GPUs and FPGAs. Additionally, benchmarking of NPUs within
mobile platforms has shown to be better in runtime than desktop CPUs and
comparable to GPUs while consuming less energy [61].

47

3.3 Image Processing Optimisations

Optimisations are necessary for improving overall systemperformance, There
are three primary categories. First, Hardware optimisations which include
optimising memory architectures, computation engine and integrating addi-
tional accelerators. Algorithmic optimisations focus on improving the com-
putational procedures, ensuring efficient solving strategies. Lastly, domain-
specific optimisations leverage domain knowledge and characteristics inher-
ent to image processing which aim to improve performance, accuracy, and
computational efficiency. This section explores optimisation techniques tai-
lored for image processing and CNN algorithms across various hardware ac-
celerators, primarily focused on FPGAs.

Hardware Optimisations

In image processing, memory usage primarily contributes to overall energy
consumption and runtime, especiallywhenalgorithms require complete frames
to be stored in memory [62]. However, accelerators such as FPGAs have
resource limitations, making efficient utilisation critical for meeting perfor-
mance, size, and power constraints [63]. Hardware-based memory optimisa-
tions can be classified into on-chip and off-chip categories:

• On-chip: Involves optimising the use of fast but limited on-chip memory
resources like Block RAM in FPGAs or L1/L2 caches in CPUs and GPUs.

• Off-chip: focuses on optimising the use of larger but slower off-chip
memory like DDR RAM.

Line buffers are a memory optimisation technique used in convolution-
based algorithms byminimising redundantmemory access. The first few lines
of the image or signal are loaded into the line buffer, marking the only time
these lines are fetched from the main memory. As the convolution opera-
tion progresses through the image or signal, the lines already in the buffer
are reused to calculate multiple output pixels, thereby eliminating the need
to fetch the same lines from the main memory again. When moving to the
next set of lines, the buffer shifts, discarding the oldest line and fetching a
new one to ensure that the lines immediately needed for the convolution

48

Figure 3.2: Hardware Pipelining: concurrent processing of multiple stages ina computational task, enhancing throughput and reducing latency.
are always available. This data reuse and line shifting minimises the num-
ber of times the slower main memory has to be accessed. Line buffers have
been explored throughout literature [64–67]. Ping-pong buffers employ a
dual-buffering scheme, where two or more buffers alternate roles in a syn-
chronised manner. This approach allows one buffer to be filled with new
data while the other is being processed, thereby increasing the throughput
by speeding up the read/write process [68–70].

Pipelining is a technique used to increase the throughput by partitioning
complex operations into discrete, independent stages implemented within
logic elements like LUTs and flip-flops. Each stage performs a specific opera-
tion and is clocked separately, allowing for concurrent execution of multiple
data elements across stages shown in Fig. 3.2. In the works of, Jiang et al. [68]
and Bai et al. [69], significantly improved throughput in their designs, the data
generated by each operation was transferred to the next operation without
storage, reducing resource consumption and off-chip latency. Additionally, It
is important to ensure stage independence for maximum parallelism and to
balance resource utilisation to avoid bottlenecks.

Look-up tables (LUTs) are an effective optimisation technique to increase
efficiency [71,72]. LUTs pre-compute and store the results of frequently used

49

operations, allowing for rapid retrieval and eliminating the need for redun-
dant calculations. In addition, for more complex expressions, such as square
roots or multiplying and dividing by an arbitrary number, look-up tables (LUT)
and raster based incremental methods can offer improved performance.

Memory architecture can significantly impact both performance and en-
ergy efficiency, especially when dividing on-chip memory into smaller blocks
to allowparallel access and reduce latency. However, the choice of parallelism
influences the requiredmemory organisation and, consequently, the total en-
ergy consumption, which is explored in literature [73, 74]. Following on pre-
vious works, Tessier et al. [75] showed on-chip power reduction through con-
verting user-defined memory specifications to on-chip FPGA memory block
resources. FPGAs often have fixed-size memory that may not align well with
the task at hand, leading to energy overhead. Partitioning techniques are
therefore required to efficiently manage the storage and processing needs
of image data. In the work, Garcia et al. [76], showed that effectively partition-
ing image frames into BRAMs in order tomaximise utilisation (ie, minimise the
number of required on-chip memories) can reduce power consumption with-
out affecting the performance. Various off-chip caching systems have been
developed tomitigate the latency overheads, such as a three-levelmemory ac-
cess architecture proposed by Zhang et al. [77]. This architecture includes off-
chip memory, on-chip buffers, and local memories. Nonetheless, the system
entails significant waiting times for valid signals between Block RAMs (BRAMs)
and off-chip memory, introducing delays.

Approximate computing techniques can significantly improve computa-
tional throughput and energy efficiency in image processing tasks when im-
plemented on FPGAs [78]. Thesemethods trade off a small degree of accuracy
for performance gains. Two primary strategies are generally used: the first
leverages approximate arithmetic for reduced-precision calculations, while
the second aims to decrease the total number of operations without substan-
tially affecting output quality. These approaches can be integrated into the
learning or optimisation stages to balance both accuracy and computational
demands effectively. One study has shown using lower-bit precision like INT8
and INT4 significantly speeds up neural network inference on various archi-
tectures. For example, INT8 inference led to up to 5.02× speedup on GPUs,
and INT4 added another 50-60% speed gain. Mix-precision further improved

50

ResNet50’s speed by 2% without accuracy loss. These benefits extend to non-
GPU platforms, achieving up to 2.35× speedup [79].

CNN Hardware Optimisations

CNNs have now become a popular method of feature extraction and classi-
fication. Therefore, this section explores hardware-based optimisation tech-
niques that improve performance. Optimising CNNs on hardware accelera-
tors requires careful algorithm-to-hardware mapping and resource manage-
ment. The convolutional and fully connected layers are typically the most
resource-intensive in terms of both computational logic and memory foot-
print. Specifically, the storage of high-precision weights and biases for these
layers can consume substantial portions of on-chip memory, while the mul-
tiply accumulate (MAC) operations required for convolutions and activation’s
demand significant computational resources as discussed by Laith et al. [80].

Multiple techniques address these challenges. Firstly, pruning is a com-
pression technique that reduces the model’s complexity [81]. These meth-
ods identify and remove weights and neurons that contribute minimally to
the model’s predictive performance, usually based on certain statistical or
empirical thresholds. Pruning lessens the memory footprint, reducing the
storage required for high-precision weights and biases. At its simplest level,
pruning removes the smallest weights, setting them to zero as demonstrated
by Song et al. [82]. When optimised for energy consumption, pruning tech-
niques that target the least energy-consuming weights achieved a 1.74× gain
in efficiency compared to traditional approaches [83]. In both methods, the
pruned network is fine-tuned to maintain the classification accuracy. Multi-
ple studies demonstrate that pruning eliminates 53% to 85% of weights in a
CNNs convolutional and fully connected layers while losing around 0.5 ∼ 1%
accuracy [84, 85]. Table 3.2 summarises optimisations techniques found in
hardware.

Domain-Specific Optimisations

Domain-specific optimisations within the imaging domain are methods tai-
lored to increase the performance of applications. These optimisations lever-

51

Table 3.2: Summary of Hardware Optimisation Techniques
Optimisation Technique Description

Pipelining Concurrent processing of tasks in stages within a pipeline.
Vectorisation Performing operations on entire vectors of data in a single instruction.

Cache Optimisation Enhancing data locality and minimising cache misses for improved memory access.
Line Buffer Storing and processing a line of data at a time; optimising access patterns and reducing memory bandwidth usage.

Look-Up Table Using precomputed values stored in a table for quick retrieval; enhancing computational efficiency.
Memory

Architecture Optimising the design and organisation of memory systems for efficient data access.
Approximate
Computing Allowing imprecise calculations without prioritising accuracy.

age the unique characteristics of image processing. Such optimisations often
involve exploiting properties like spatial locality, symmetry, and redundancy
present in images. In literature, there has been very little research on plat-
form agnostic domain-specific optimisations of imaging algorithms on FPGAs.
Domain-specific tools and optimisations, particularly in areas such as compil-
ers [86–88], have been explored but not yet reached maturity.

In the field of image processing, domain-specific optimisations aim to sig-
nificantly reduce computational load while maintaining consistent accuracy.
Examples of such optimisations include down-sampling [89], approximation
[90], data-type conversion [91], kernel size adjustments [92], bit-width modi-
fication [93], and the complete removal of certain operations. Although hard-
ware acceleration techniques for algorithms on CPUs, GPUs, and FPGAs have
been extensively researched [94–96], these studies generally focus only on
target algorithms. In contrast, there has been limited work on exploring the
performance andaccuracy trade-offs of domain-specific optimisations of imag-
ing algorithms specifically for FPGAs.

Downsampling is a popular method used to reduce the amount of data
in an image by selectively removing samples. This involves reducing the res-
olution of an image by eliminating pixels, usually through averaging or taking
the value of a representative pixel in a local neighbourhood. The aim is to de-
crease computational complexity and storage requirements, making it easier
to process and analyse the data. However, downsampling comes with the
trade-off of losing some level of detail, which may be critical for certain ap-
plications. It is essential to choose an appropriate downsampling factor and
method to balance computational efficiency with the preservation of impor-
tant features in the data.

Fast Fourier Transform is an algorithm to compute the Discrete Fourier

52

Transform (DFT) and its inverse in a more efficient manner. It capitalises on
the properties of symmetry and periodicity in the Fourier domain to reduce
the number of arithmetic operations. Instead of directly convolving spatial or
time-domain signals, FFT first transforms both the input signal and the kernel
into the frequency domain. Here, the convolution operation transforms into
a simpler element-wisemultiplication. After thismultiplication, an inverse FFT
(IFFT) is applied to bring the data back to the spatial or time domain. The FFT
algorithm reduces the computational complexity from O(n2) for direct convo-
lution to O(n log n), making it highly efficient, especially for larger kernels. The
use of FFTs in image processing is found inmanyworks [97–99]. However, FFT
is hardware-intensive due to its high memory bandwidth requirements and
arithmetic complexity, which can lead to increased power consumption.

Additional work by Qiao et al. [100] proposed a minimum cut technique to
search fusible kernels recursively to improve data locality. Rawat et al. [101]
proposed multiple tiling strategies that improved shared memory and reg-
ister resources. However, such papers propose constrained domain-specific
optimisation strategies that exclusively target CPU and GPU hardware. In re-
lated work, Reiche et al. [102] proposed domain knowledge to optimise image
processing accelerators using high-level abstraction tools such as domain-
specific languages (DSL) and reusable IP-cores. Additional optimisation tech-
niques commonly used in general-purpose computing, such as loop unrolling,
fission, and fusion, do not map effectively onto FPGA architectures due to
the distinct operational paradigms and resource constraints inherent to FPGA
design. Consequently, there is a need for the development of accelerator-
agnostic and domain-specific optimisation strategies that can be universally
applied across diverse computational platforms, including CPUs, GPUs, and
FPGAs, for a more cohesive and efficient heterogeneous design.

Algorithmic Optimisations

Algorithmic optimisations refer to techniques employed to exploit mathemat-
ical properties or patterns in the data being processed. Strategies may in-
clude the use of more efficient data structures, dynamic programming, divide
and conquer techniques, and algorithmic transformations. Convolution oper-
ations are used in many image processing algorithms which typically account

53

for the majority of computation time. Various algorithmic convolution opti-
misation strategies are discussed below:

• The Strassen [103] algorithm optimises matrix multiplication through re-
cursive partitioning. Given two n× n matrices, A and B, it divides each
into four submatrices and recursively computes seven intermediate prod-
ucts (M1 to M7). These products are combined to yield the final ma-
trix using additions and subtractions. The algorithm’s time complexity
of O(nlog2 7) improves upon the O(n3) complexity of naive multiplication,
particularly advantageous for larger matrices. However, its practicality
diminishes for smaller matrices due to increased constant factors and
memory requirements associated with additional operations. The algo-
rithm has shown to be effective in reducing the computational complex-
ity without losing accuracy in CNN algorithms [104].

• The Winograd [105] filter algorithm utilises minimal filtering algorithms
to performconvolutions, particularly advantageous for small kernel sizes
K ≤ 3. It transforms the convolution operation into a set of polynomial
multiplications in a transformed domain. The idea is to decompose the
convolution into smaller, overlapping tiles and then apply the Winograd
transformation to each tile separately. This results in a significant reduc-
tion in the number of multiplicative operations, which are computation-
ally more expensive than additive operations. Numerous works in liter-
ature implementing and comparing Winograd performance [106, 107].
In comparison to FFT-based methods which also reduce the number of
multiplications by transforming the convolution into a point-wise multi-
plication in the frequency domain. However, these methods introduce
the overhead of complex-to-real transformations and are more compu-
tationally intensive for small kernel sizes due to the increased number
of additions and the need for padding.

Specific image processing algorithms often require sorting pixels (e.g., me-
dian filtering). These algorithms can benefit from parallel sorting network al-
gorithm optimisations. Sorting networks consist of a predefined sequence
of compare-and-swap operations, often organised in a pipeline or tree-like
structure, enabling simultaneous execution. In the case of median filtering,
sorting networks such as Batcher’s Odd-Even Mergesort [108] can be imple-
mented to sort the values in the input window in parallel, thereby reducing
time complexity [109].

54

Table 3.3: Commercial & Academic High-Level Synthesis Compilers.
Compiler Owner Year License Input OutputVitis [112] Xilinx 2013 Commercial C++ VHDL/VerilogHDL Coder [113] Mathworks 2019 Commercial Matlab/Simulink VHDL/VerilogIntel HLS [114] Intel 2017 Commercial C++ VHDL/VerilogHardcaml [115] Jane Street 2018 Open Source Ocaml VHDL/VerilogStratus HLS [116] Candence 2015 Commercial C/C++/SystemC RTLAUGH [117] TIMA Lab. 2012 Academia C subset VHDLShang [118] U. Illinois 2013 Academia C subset Verilog

In CNNs, algorithmic optimisations are commonly used to reduce runtime
for both convolutional and fully connected (FC) layers. GeneralMatrixMultiply
(GEMM) is a keymethod for implementing these layers, as indicated in [110,111].
In the FC layer, GEMM proves effective for batch processing featuremaps (FMs),
organised as a CHW ×B matrix. In which C represents the number of chan-
nels, H for height, W for width, and B for the batch size. This approach opti-
mises computational throughput and memory bandwidth by loading weights
just once per batch. Given that FC layers house the majority of CNN weights,
GEMM significantly enhances computational speed, especially with increasing
sparsity in the FC weight matrix.

3.4 High-Level Synthesis

High-level synthesis (HLS) is a potential solution to increase the productivity
of real-time image processing development on FPGAs. In order to close the
performance gap between the manual and HLS-based FPGA designs, various
code optimisations that exploit FPGA architecture for potential speedups are
made available in today’s HLS tools. At present, there are various high-level
synthesis compilers that are being developed commercially and in academia,
shown in table 3.3.

Efficient code optimisation by HLS compilers is vital in real-time image pro-
cessing applications, where the goal is to minimise execution time and re-
source utilisation [119]. Furthermore, the quality of generated Register Trans-
fer Level (RTL) descriptions in High-Level Synthesis (HLS) is found to be influ-
enced by the high-level language used, prompting a need for optimised ap-
proaches [120]. Notably, comparative research underscores significant per-
formance gaps between HLS-based designs and manually crafted counter-

55

parts for intricate applications [121–123]. Noteworthy disparities of up to
40 times in performance have been documented, particularly evident in de-
manding tasks like high-definition stereo matching.

Several contemporary avenues in HLS compiler optimisation merit explo-
ration. In the work [124], investigates the impact of compiler optimisations on
hardware generated by HLS tools, highlighting the significance of both the op-
timisation strategies and their sequential application order in enhancing the
RTL output quality. In addition, a subsequent study [125], refines the under-
standing of HLS-based real-time image processing design optimisations. Ap-
plying a sequence of optimisation techniques, this approach showcases com-
parable performance when benchmarked against alternative methodologies
and industry-standard HLS tools. The optimisations applied in both works in-
clude:

• Function In-lining: Incorporating functions directly into the code to elim-
inate function call overhead and improve overall performance.

• Loop Manipulation: Adjusting loop structures to enhance computa-
tional efficiency and reduce processing time.

• Symbolic Expression Manipulation: Utilising symbolic expressions to
manipulate mathematical representations for improved computational
speed and precision.

• Loop Unrolling: Expanding loops by replicating their bodies to reduce
loop-control overhead and maximise parallelism.

• Array Transformation: Applying various techniques to optimise arrays,
the two commonly applied techniques are listed:
– Array Partitioning: Dividing arrays into smaller, moremanageable
partitions to enhance data locality and optimise parallel processing.

– ArrayReshaping:Modifying the shape of arrays to better alignwith
computation requirements, improving overall efficiency in data pro-
cessing.

The advantages of HLS tools observed by Wakabayashi et al. [126], on ele-
vating abstraction levels highlight how expressing designs in higher-level lan-
guages like C and C++ can significantly reduce code complexity, making them
better at managing complex designs more effectively.

56

Domain-Specific Languages (DSL)

Table 3.4: Image Processing Targeted Domain-Specific Languages
Compiler Owner Year License Frontend Backend

Halide-Genesis [127] Akari, Ishikawa Et al. 2019 Academia Actor/Dataflow VHDL/Verilog
RIPL [128] Robert,Stewart Et al. 2018 Academia Actor/Dataflow C/Verilog
HiPacc [129] R., Membarth Et al. 2015 Academia C++ VHDL/Verilog
CAPH [130] J. Sérot Er al. 2013 Academia Actor/Dataflow VHDL/SystemC

RVC-CAL [131] EFPL 2010 Academia Actor/Dataflow C/Verilog

A domain-specific language (DSL) is a specialised programming language for
a particular domain, such as image processing. The following paragraphs
look into some recent developments of DSLs within image processing. In con-
trast to C/C++ with HLS tools, DSLs provide clearer syntax, rigorous semantic
checks and possible compiler domain optimisations for improved generated
code. A summary of available DSLs is found in Table 3.4.

Richard, Membarth et al. [129] proposed a new DSL and source-to-source
compiler for image processing called ’Hipacc’. They show that domain knowl-
edge can be captured to generate tailored implementations for C-based HLS
from a common high-level DSL description targeting FPGAs and GPUs. The
image processing algorithms that were generated in VHDL/Verilog code from
the DSL are evaluated by comparing themwith hand-written register transfer
level (RTL) implementations. The results show that the HLS still has deficien-
cies in contrast to the RTL but enables rapid design space exploration. The
Hipacc framework does not generate the hardware descriptor language but
relies on Xilinx’s HLS tools for generated HDL optimisations.

In thework by Jocelyn, Serot et al. [130] presentedCAPH, aDSL suited to im-
plementing stream-processing based applications on FPGA. CAPH relies upon
the actor/dataflow model of computation and the tool suite also contains a
reference interpreter and a compiler producing both SystemCandVHDL code.
CAPH was evaluated by implementing a simple real-timemotion detection on
an FPGA platform. This was done to validate the overall methodology and
to identify key issues. The results established three research directions to
improve CAPH. The first is assessing the tools on larger and more complex
applications and comparing them with hand-crafted RTL in terms of resource

57

usage and runtime. The second research direction is improving the compiler
and optimising the generated VHDL code. Third, applying static analysis tech-
niques to actor behaviours to statically estimate the size of FIFO channels.

Another DSL for FPGAs was proposed by Robert, Stewart et al. [128] called
RIPL. The aim is to increase throughput by maximising clock frequency and
minimising resource usage to fit complex algorithms onto FPGAs. RIPL intro-
duces an algorithmic skeleton to express image processing algorithms which
are then exploited to generate deep pipelines of highly parallel and memory-
efficient image processing components. The data-flow graph generated is ex-
pressed in CAL actor language and is compiled into Verilog. The DSL was used
to implement image watermarking and multi-dimensional subband decom-
position algorithms.

3.5 Benchmarking

Benchmarking is a relatively established concept in computing, serving as a
crucial tool to gauge the performance of various systems. Identifying themost
suitable hardware platform becomes imperative, especially when aiming for
efficiency and performance. Yet, the challenge lies in determining this with-
out investing significant time and understanding into implementations. Thus,
benchmarkingmeasures performance and aids inmaking informed decisions
about hardware compatibility for complex algorithms.

Numerous benchmarking studies have been conducted on a variety of ac-
celerators, including FPGA [132], GPU [133], TPU [134], and NPU [135]. These
studies assess performance using specific metrics and facilitate comparisons
between different hardware platforms [136]. Additionally, recent interest in
the industry has begun to develop suites such as MLPerf [137] and Data-
Perf [138] to establish a standardised ML benchmarking and evaluation to
allow comparison of inference/training chips or models.

Early work in heterogeneous benchmarking was the introduction of the
Rodinia suite in 2009 [139]. Rodinia comprises applications and kernels that
embody the behaviours of the Berkeley dwarfs. These are a taxonomy of
13 computational patterns widely used in various scientific domains. The
suite also addresses communication, synchronisation, and power consump-

58

tion issues. However, Rodinia does not leverage newer features, such as ad-
vanced heterogeneous programming constructs, half/mixed precision, ten-
sor computations, and libraries that enhance communication between archi-
tectures. Instead, Rodinia focuses on more abstract algorithms rather than
micro-benchmarks that target specific components.

Scalable Heterogeneous Computing (SHOC) [140] developed in 2010 as
another benchmark suite targeting heterogeneous systems. The suite pri-
marily focused on scientific computing workloads, including common kernels
such as matrix multiply, fast Fourier transform, and Stencil computation. The
benchmark is divided into two testing methods: The stress tests use compu-
tationally demanding kernels to identify OpenCL devices with bad memory,
insufficient cooling, or other device component problems. The other tests
measure many aspects of system performance on several synthetic kernels
as well as common parallel operations and algorithms. SHOC supports var-
ious versions of benchmarking, from serial to testing inter-communication
between architectures. Every application in the SHOC suite operates within a
cohesive framework that allows users to define specific testing parameters,
including the desired number of iterations. The framework can also capture
intricate metrics, such as floating-point operations per second (FLOPS). The
drawback to SHOC is that it focuses on basic parallel algorithms, thus miss-
ing the nuance of real-world applications; just like Rodinia, it has not been
updated to test modern algorithms and cannot scale to larger problem sizes.

In recent work, Mirovia [141] builds upon both Rodinia and SHOC, de-
signed to leverage the newer evolving architectures. While also represent-
ing a diverse set of application domains. This includes a particular focus on
deep neural networks. Mirovia aims to characterise modern heterogeneous
systems better. The benchmark suite falls short in the range of hardware it
can target, being limited to Compute Unified Device Architecture (CUDA) en-
abled GPU only. Other work focuses on a single domain area; QuTiBench [142]
is a multi-tiered framework for neural networks which introduces optimisa-
tion strategies such as quantisation, which is essential for specific accelera-
tors such as FPGAs. Only the classification stage of the image-signal process-
ing pipeline is tested within the framework; therefore, determining the full
performance scope of a vision system is difficult. Reuther et al. [143] pro-
posed a survey and benchmarked machine learning algorithms on commer-

59

cial low-power ASICs and a CPU. However, such papers propose benchmarks
and frameworks for specific algorithms or target singular architectures, fo-
cusing only on execution time performance. In addition, power consumption
and memory transfer metrics are often missing in such benchmarks, which is
a driving factor for embedded systems with limited energy.

3.6 Evaluated Image Processing Algorithms

This section outlines the implementation details on hardware (primarily FPGA)
and the rationale behind the selection of various algorithms evaluated in the
subsequent chapters. All algorithms were partly chosen due to their popular
use inmany image processing pipelines and varying complexity. The CPU and
GPU image processing implementations of all algorithms are derived from
OpenCV [23]. The FPGA implementations have been reviewed in literature to
develop widely adoptedmethods (Algorithmically the same as CPU & GPU for
fair comparison), which, at best, are close to the most optimal design.

• RGB2Grey, Image Addition, Subtraction: These operations serve as
fundamental building blocks in image processing pipelines. Convert-
ing images to grayscale simplifies processing tasks, reducesmemory us-
age, and enhances contrast for improved feature detection. Grayscale
images directly represent luminance, making them useful for detecting
subtle brightness variations. In addition, grey images have widespread
compatibility, require less storage space, and can help reduce noise lev-
els, resulting in clearer images for analysis. Image addition can adjust
brightness or contrast by adding or subtracting constant values, while
subtraction can isolate foreground objects through background subtrac-
tion or detect changes in scenes over time.
The FPGA colour conversionmodule declares parameters for the dimen-
sions of the image (m columns by n rows) and defines registers to store
the input colour image in BMP format and the resulting grayscale image.
Upon initialisation, themodule reads the input colour image data from a
BMP file into memory. Then, it iterates over each pixel in the image, ex-
tracting the red, green, and blue colour values and calculating their sum.
This sum is divided by 3 to obtain the grayscale value, which is stored in
a register. The image addition and subtractionmodule functions by per-

60

forming pixel-wise arithmetic operations between corresponding pixels
in two input images. The modules primarily use registers and combina-
tional logic to perform pixel-wise addition/subtraction of two images.

• Resizing: Resizing operations are essential for various image processing
applications, including scaling images for different display resolutions or
aspect ratios. Many algorithms and CNN architectures require images to
be resized to reduce computation complexity.
The imageResize module facilitates the resizing of input image data by
adjusting its width and depth based on specified scaling factors. The
resizing operation involves updating counters for tracking column, row,
and pixel positions within the image. As the module receives valid input
data and a ready signal, it increments these counters accordingly. When
the counters reach the desired scaling factors for width and depth, the
module resets them to zero, effectively resizing the image. The output
image data is synchronized with the clock signal and becomes valid only
whenboth the columnand row counters are zero, ensuring proper align-
ment with the resized image dimensions.

• Erode, Dilate: Morphological operations like erosion and dilation are
commonly used for tasks such as image segmentation and feature ex-
traction. The module erodeDilate operates on grayscale images repre-
sented by 8-bit pixel values. A 3x3 buffer array is utilised to store neigh-
bouring pixel values for each input image pixel. Upon initialisation or
reset, the buffers and output values are cleared. As new pixel values
arrive with each clock cycle, the buffer contents are shifted accordingly.
For erosion, themodule computes the logical AND operation of all pixels
in the 3x3 neighbourhood, resulting in the minimum pixel value. Con-
versely, dilation computes the logical OR operation, resulting in themax-
imum pixel value. These operations are performed on the buffer con-
tents corresponding to the current pixel position. Finally, the resulting
eroded or dilated pixel value is output along with its validity signal.

• Box Filter, Gaussian Filter: Filters like the box filter and Gaussian filter
are fundamental for image smoothing and noise reduction.
The Verilog code comprisesmodules designed for linear filters. The "line
Buffer" module functions as a storage mechanism for incoming pixel
data, organising it into line buffers to facilitate subsequent convolution

61

operations. It efficiently manages the storage and shifting of pixel data
as needed. The "imageControl" module orchestrates the flow of pixel
data, determining when to initiate reading and writing operations based
on the availability of data and signalling when to begin filtering. It tracks
the total number of pixels processed to ensure accurate filtering across
the image. The "conv" module is responsible for executing the convo-
lution operation itself. It performs element-wise multiplication of pixel
values with corresponding kernel coefficients and aggregates the results
to generate the convolved pixel output.

• Sobel Filter, Median Filter: The Sobel filter is widely used for edge de-
tection, while the median filter is effective for noise removal. The Sobel
operator consists of two 3x3 kernels: one for detecting vertical edges
and the other for horizontal edges. The module takes nine input pixel
values corresponding to the 3x3 neighbourhood surrounding a central
pixel. These input pixels are named according to their relative positions:
Within themodule, two instances of the matrix_mulmodule compute the
gradient components along the x-axis (gx) and y-axis (gy) using the So-
bel kernels. The result of eachmultiplication operation is squared to ob-
tain the squared gradient magnitudes in the gx_squared and gy_squared
wires. These squared magnitudes are then added together to compute
the overall squared gradient magnitude in the squared_sum wire. The
sqrt module calculates the square root of the squared gradient magni-
tude.
The median filtermodule takes in pixel values (pixel_in) of image width
and operates on a square filtering window of fixed size. Within each
processing cycle, the module updates the window with new pixel val-
ues, sorts the window values to find the median value, and outputs the
median as the filtered pixel value (pixel_out). The algorithm maintains
internal registers to store the window and the histogram-based sorted
windowof pixel values. During reset, the internal registers are initialised,
and processing flags are reset.

• White Balance: White balance adjustment is essential for achieving ac-
curate colour representation in images captured under different lighting
conditions.
WhiteBalance module is designed to perform white balance adjustment
on an input image by adjusting the red, green, and blue colour channels.

62

It takes in pixel values for the red, green, and blue channels of the image.
The module maintains buffers to accumulate the pixel values for each
colour channel (red_sum, green_sum, blue_sum) and a register to count the
number of pixels processed (pixel_count). These registers store the ac-
cumulated sums and count, respectively. On each clock cycle, the mod-
ule accumulates the pixel values and updates the count. Then, it cal-
culates the average pixel values for each colour channel by dividing the
accumulated sum by the pixel count. Finally, it applies the white balance
coefficients to adjust the colour channels accordingly.

• Linearization: & Gamma Correction Linearization and gamma correc-
tion are essential in image processing, ensuring consistent pixel repre-
sentation and adjusting brightness and contrast for good visual images,
making them ideal for bench-marking.
The Linearization module is designed to linearize the pixel values of an
input image, effectively scaling them to a range between 0 and 1. The
module takes an 8-bit pixel value as input and outputs the correspond-
ing linearized value. It employs simple arithmetic logic to divide the in-
put pixel value by 255, the maximum value in an 8-bit system, thereby
scaling it to the desired range. The linearization process occurs on each
clock cycle, ensuring real-time processing of image data.
GammaCorrectionmodule applies gammacorrection to an input pixel value
using a real gamma value of 2.2. The module operates synchronously
with the clock signal and includes a reset input for initialisation. Inside
the module, it takes the input pixel value and applies a power function
with an integer approximation of the gamma value. The function then
converts the gamma-corrected integer value back to the [0, 255] range
to ensure compatibility with pixel representations. The module contin-
uously applies the gamma correction function to the input pixel value
on each clock cycle. The output pixel value is updated accordingly. The
input and output pixel values are stored in registers.

• GEMM: GEMM algorithm serves as a base building block for numerous
image processing and deep learning operations due to their algorithmic
efficiency in performing matrix multiplications. The algorithm is com-
puted in many areas of ML, such as fully-connected layers, recurrent
layers such as recurrent neural networks, Long short-term memory or
Gated recurrent unit, and convolutional layers. Benchmarking GEMM

63

allows for assessing the computational performance and scalability of
hardware architectures across a wide range of image processing and
deep learning algorithms. The optimised FPGA GEMM implementations
used for evaluation are provided by Xilinx [144] library.

• FFT (DFT): Fast Fourier Transform (FFT) are found in various operations
in imaging algorithms by enabling efficient frequency domain analysis
andmanipulation of images for tasks such as filtering, convolution, regis-
tration, texture analysis, edgedetection, compression, and super-resolution
imaging. Xilinx provided FFT IP-block [145] is used in the benchmarking.
The module implements the Cooley-Tukey FFT algorithm for computing
both forward and inverse DFTs of sample sizes that are powers of 2.

• STREAM:Memory bandwidth and latency are importantmetrics because
they directly impact the speed and efficiency of data transfer between
the processor and memory. Therefore, when benchmarking image pro-
cessing algorithms, measuringmemory bandwidth and latency provides
insights into how efficiently the algorithms utilise memory resources,
helping assess their overall performance and scalability. The implemen-
tation used for FPGAs are from HPCC _FPGA benchmarking suite [146].

• Demosaicing: Demosaicing algorithms are essential for reconstructing
colour images from Bayer-pattern sensor data which are common filter
used in vision systems. The algorithm is a good choice to benchmark
since most vision systems use Bayer filter. Xilinx provided de-mosaicing
IP-block [147] is used in the benchmarking. The demosaicing algorithm
used is a bilinear interpolation, where missing colour values in a Bayer-
filtered image are estimated by averaging neighbouring pixel values.

• SIFT: Scale-Invariant Feature Transform (SIFT) is a widely used technique
for feature extraction in image processing applications. The FPGA imple-
mentation is discussed in Section 5.2.1.

• CNN (Classification): Convolutional Neural Networks (CNNs) have be-
come significantly popular methods for image classification, object de-
tection/segmentation tasks. Xilinx Deep Learning Processor Unit (DPU)
is used to implement both optimised ResNet-18 and MobilnetV2 archi-
tectures [148].

64

3.7 Conclusion

This chapter delves into the discussion and evaluation of diverse heteroge-
neous architecture implementations, tools, and optimisation strategies. The
literature review emphasises that specific processing architectures, such as
GPUs, FPGAs, and VPUs, exhibit greater efficiency in executing imaging algo-
rithms thanCPUs, owing to their architectural properties (e.g., SIMD, DSP Slice)
and depending on algorithmic features like parallelisation and data depen-
dencies. Moreover, these architectures to exploit their advantages leads to
further performance gains. Various optimisations have also been shown to
enhance the efficiency of image processing algorithms, encompassing tech-
niques such as algorithm replacement, hardware (memorymanagement) and
pipelining schemes. However, the knowledge gap is evident in the lack of a
systematic approach or set of strategies for partitioning imaging algorithms
onto the appropriate hardware accelerators in a heterogeneous platform, nor
a comprehensive rationale for such decisions. In addition, there are no end-
to-end implementations of CNN and feature extraction algorithms utilising
CPU-GPU-FPGA architectures. The absence of image-domain-guided optimi-
sations and understanding of trade-offs further complicates achieving opti-
mal performance and efficiency. Hence, within the scope of this thesis, a ro-
bust benchmarking framework that guides algorithm partitioning along with
domain-specific optimisation strategies on heterogeneous platforms is pro-
posed.

65

4 HArBoUR: Heterogeneous
Architecture Benchmarking on

Unified Resources

This chapter presents a description of HArBoUR, a heterogeneous imaging
framework used for guidance and implementation of various image process-
ing algorithms presented in later chapters. In addition, the chapter contains
benchmarks and evaluations of micro/macro image processing algorithms
commonly found in imaging pipelines of vision systems. The algorithm suit-
ability on a specific accelerator is determined from the analysis of the results.

4.1 Introduction

The advances in multi-core processors and accelerators have enabled real-
time embedded imaging algorithms to become ubiquitous withinmany vision
application areas such as advanced driver assist systems (ADAS) [149], surveil-
lance [150] and satellites [151]. The growing demand for image processing
algorithms on systems with resource and energy constraints requires archi-
tectures that perform tasks efficiently. These hardware accelerators come
with various architectures ranging fromCPUs, GPUs, and FPGAs. Traditionally,
embedded imaging designs often involve implementing image processing al-
gorithms on homogeneous architectures, which come with hardware limita-
tions. However, recent developments introduce heterogeneous architectures
that combine multiple specialised accelerators on a singular interconnected
chip [152]. These novel architectures provide optimum design opportunities
for embedded imaging development. However, current developments in tar-
geting heterogeneous platforms are still primitive and require careful consid-
eration of various development languages, tool-sets and performance pro-

66

files to fulfil energy and runtime constraints of applications. Furthermore, cer-
tain accelerators have pre-written optimised vision libraries, e.g., OpenCV/CUDA
(for CPU/ GPU) and xfOpenCV (for FPGAs). However, the design and develop-
ment of image processing algorithms in a heterogeneous environment is still
an arduous task. It requires in-depth knowledge of multiple hardware accel-
erators, and each differing in performance due to their underlying architec-
tures. Additionally, FPGA designs require knowledge of hardware descriptor
languages (HDLs), which have higher learning difficulty despite the existence
of recent high-level synthesis tools or domain-specific languages that abstract
away from the underlying hardware. This is due to a lack of understanding
and the existence of benchmarks for image processing algorithms on differ-
ent hardware. Therefore, partitioning complex image processing algorithms
onto each accelerator remains a difficult task for application designers.

Benchmarking has played an integral part within the computing domain
for decades. Since the beginning of computing systems, there has been a
persistent need to evaluate and compare the performance of hardware com-
ponents. Initially, with the early day mainframe computers to themodern era
of microprocessors, GPUs, and custom ASICs, benchmarking has provided a
standardisedmeasure to gauge the efficiency, speed, and capabilities of hard-
ware devices. Over the years, benchmarking tools and suites have played a
pivotal role in driving technological advancements, guiding design decisions,
and ensuring that hardware meets the ever-evolving demands of software
applications.

To address the emerging demand for high performance vision hardware,
there is a need for a suitable benchmarking framework that dissects the imag-
ing/vision algorithms in a disciplinedway andbenchmarks their performances
(both energy and execution time) on all available target hardware (e.g., CPU,
GPU and FPGA). To address such a gap, this chapter proposes a new frame-
work providing a systematic way of implementing imaging designs on spe-
cialised platforms and perform benchmarks on representative vision algo-
rithmswhile assessing execution time, memory latency and energy consump-
tion. System designers will use the proposed framework to identify appro-
priate hardware for the target application and unlock the potential of a true
heterogeneous system. The main contributions of this chapter are:

• We propose a framework that studies features of image processing al-

67

gorithms to identify characteristics. These characteristics help partition
complex algorithms into themost optimal target accelerators within het-
erogeneous architectures.

• The approach adopts a systemic andmulti-layer strategy that offers trade-
offs between runtime, energy and accuracywithin the imaging sub-domains
e.g., CNNs and feature extraction. Specifically,HArBoUR enables support in
constructing end to end vision systems while providing expected results
and guidance.

• Domain knowledge-guided hardware evaluation of computational tasks
allows imaging algorithms to bemapped onto hardware platformsmore
efficiently than a heuristic based approach.

• We benchmark representative image processing algorithms on various
hardware platforms and measure their energy consumption and execu-
tion time performance. The results are evaluated to gain insight into why
certain processing accelerators perform better or worse based on the
characteristics of the imaging algorithm.

4.2 Benchmarking Framework for ImageProcess-
ing on Hardware

For efficient implementation on heterogeneous platforms, the algorithm de-
sign will require partitioning any image processing algorithm according to its
suitability for individual components in the pipeline on the target hardware.
Therefore, a standard framework is proposed containing a pool of image pro-
cessing algorithms and their characteristics in accordancewith their hardware
suitability. We selected a range of low, medium and high-level algorithms
from the image processing hierarchical classification domain, providing wider
coverage of commonly used operations performedwithin a vision application
pipeline.

Various algorithmic and hardware characteristics that would impact the
performance are identified in theheterogeneous benchmark framework, shown
in Fig. 4.1. The framework diagram offers a clear overview of the image pro-
cessing landscape. Itmaps out the relationship betweenhardware properties,
optimisations, algorithms, metrics and memory access patterns. This concise

68

Figure 4.1: Benchmarking Framework for Image Processing Algorithms, High-lighting Key Metrics and Properties
visual guide aids designers by offering insights into potential bottlenecks, sug-
gesting areas for innovation, and guiding the fine-tuning of algorithms on het-
erogeneous platforms to achieve peak performance in imaging tasks.

4.2.1 Processing Pipeline & Operation Types:

Image processing algorithms are organised into three primary domains: Pixel,
Kernel, and Image. The Pixel domain focuses on operations that manipulate
or query individual pixel values. The Kernel domain encompasses algorithms
that utilise a smallmatrix (the kernel) tomodify an image. Lastly, the Image do-
main deals with operations that consider the image as a whole, where global
features and patterns are essential for labelling.

69

4.2.2 Operator Group

This label specifies the name of the algorithm. Algorithmsmay perform a par-
ticular operation (e.g., Image Arithmetic), but depending on the stage within
the image computation pipeline, the data type of the pixel is defined differ-
ently and may contain additional values for calibration, such as a pedestal. It
is necessary to be explicit when defining the algorithm within the framework.
These image processing algorithms can further be categorised into groups
(Operation Group) depending on the type of operation it performs.

Image Arithmetic & Pre-Processing: Image arithmetic and pre-processing
are foundational steps in image processing pipelines, preparing images for
subsequent analysis. These algorithms predominantly execute primitive op-
erations to transform an input format into a desired one. They typically oper-
ate on individual pixels using localised data, which minimises task dependen-
cies. While algorithms like multiplication, accumulation, squaring, magnitude
determination, and weighting are arithmetically simple, most architectures
can compute them with ease. Given their low initialisation and latency re-
quirements, architectures such as CPUs and FPGAs are particularlywell-suited
for these tasks.

Geometric Transformation& ImageAnalysis: Geometric transformations
refer to operations that modify the spatial arrangement of pixels in an im-
age. These transformations can be applied for various purposes, such as im-
age registration, scaling, and augmentation. Typically, these algorithms in-
volve convolution and interpolation operations, which can be linear or non-
linear. Additionally, the choice of interpolation method, whether nearest-
neighbour, bilinear, or bicubic, can significantly impact both the quality of
the transformed image and the computational complexity of the operation.
Several operations are sequentially bound; forward mapping directly calcu-
lates new pixel locations but can leave gaps in the output. Its counterpart,
backwardmapping, determines source contributors for each output pixel and
often requires interpolation, which can be sequential, especially with higher-
ordermethods. Warpingwith a displacementmap, which dictates pixelmove-
ment, can also be sequential if complex algorithms determine displacements.
Resampling, essential post-mapping, can become sequential with intricate in-

70

terpolation. Cumulative transformations, where multiple operations are ap-
plied in sequence, and error corrections post-transformation, further intro-
duce sequential elements. For operations with inherent sequentiality, such as
certain geometric transformations, traditional CPUs are often the most suit-
able due to their optimised instruction sets for sequential tasks and complex
branching. However, for tasks within geometric transformations that can be
parallelised, GPUs, FPGAs, and TPUs can offer significant speedups

Image analysis algorithms label and understand various statistical data
about a pixel. These algorithms have many irregular memory access patterns
(mean, mode, min/max) and branching conditions that negatively impact the
performance of processing accelerators.

Image Filters &Morphology: Image filter algorithmsmodify particular spa-
tial frequencies. The image is filtered either in the frequency or in the spa-
tial domain. Image filters are divided into two categories: linear and non-
linear. Linear image filters perform the convolution of an image using a pre-
computed kernel for efficiency. The data-independent multiply and accumu-
late operations coupled with sequential data access of linear filters map well
onto GPUs and FPGAs. Contrarily, non-linear filters have varied memory ac-
cess patterns and have higher arithmetic intensity. Additionally, certain algo-
rithms with branching makes it arduous to implement efficiently on a GPU
and FPGA, which can exploit parallelism in these operations. Non-linear fil-
ters consist of operations where the output pixel value is determined based
on some non-linear function of the input pixel values in its neighbourhood.
Examples of algorithms include median, adaptive and bilateral filtering.

In morphological operations, an image is processed with a structuring el-
ement, which is a small binary or grayscale mask. The structuring element
is moved over the entire image, and at each position, a computation is per-
formedbasedon the values of the imagepixels that overlapwith themask. Ar-
chitectures with cache hierarchies, prevalent in modern CPUs and GPUs, can
exploit this pattern for enhanced cache locality, especially when the structur-
ing element’s dimensions are compatible with cache sizes. In row-major or-
der, horizontal traversal optimisesmemory access, while vertical traversal can
introduce inefficiencies due to memory strides. Basic operations like dilation
and erosion have regular patterns, but advanced morphological algorithms

71

can cause irregular accesses. These irregularities, often from adaptive struc-
turing or conditional operations, challenge GPU performance through warp
divergence. Additionally, these algorithms may require repeated pixel reads,
especially with overlapping structuring elements, and in-place operations risk
read-write conflicts, which need careful management to prevent race condi-
tions.

Feature Extraction: Feature extraction algorithms, such as SIFT [153], SURF
[154], andOriented FAST and Rotated BRIEF (ORB) [155], are designed to iden-
tify and describe local features in an image. These features are often points or
small imagepatches that are distinct and canbe reliably and robustly detected
in various scales of the same scene. The pixels extracted from an image are
not stored adjacently in memory and require expensive computational reads
from non-adjacent memory addresses that will impact the performance of all
processing architectures. Algorithms such as ORB examine a circle of pixels
around each candidate pixel. While each keypoint detection is independent
and can be parallelised, the algorithm involves conditional checks, which can
lead to divergent execution paths.

Regarding hardware suitability, CPUs have a layered hierarchy of caches,
encompassing L1, L2, and L3. This architecture is good at offsetting the per-
formance implications of non-sequential memory accesses. Therefore, algo-
rithms with random access patterns, akin to the keypoint detection seen in
SIFT or ORB, can leverage this hierarchical structure. Nevertheless, despite
their proficiency, CPUs will lag in efficiency when confronted with parallel op-
erations stages within the algorithms. GPUs and FPGAs, on the other hand,
are geared towards the parallel processing tasks which are found during the
convolution and prefix sum stage. GPUs favour coalesced memory access,
where adjacent threads reading consecutivememory locations achieve faster,
more efficient data retrieval. Consequently, the random accesses, if frequent,
can lead to performance dips due to the resulting uncoalescedmemory trans-
actions. However, TPUs are purpose-built for tensor operations, forming the
basis of deep learning methodologies. Traditional feature extraction may not
have direct advantages from TPUs unless they’re integrated into a wider deep
learning framework.

72

Data Primitive:

This characteristic specifies the type of data unit or collection of pixels an al-
gorithm operates on, encompassing attributes like type, size, and representa-
tion. Depending on the level of the pipeline, a pixel may refer to an individual
or collection of bits of type word, uint8 or uint12. The following are the various
data primitives found within image processing:

• Bit: Refers to individual bits in the binary representation of the image
data, encompassing pixel values, metadata, file headers, andmore, con-
tingent on the file format.

• Element: Denotes a discrete scalar value, formed of bits, quantifying
pixel attributes, like colour intensity or luminance.

• Pixel: Is a set of elements symbolising a point in an image, with formats
such as RGB, YUV, or Bayer encoding.

• Frame: Is a structured pixel collection visualised in 2D or 3D, where the
resolution indicates the total pixel count.

• Patch: Is a small frame subsection targeted by algorithms like blurring;
a 3 × 3, 5 × 5 Kernel is a matrix sliding over the image, its values mul-
tiplied with corresponding patch pixels, and the results summed for a
transformed image.

• Block: Pertains to a contiguous pixel group, typically of fixed dimensions
like 8 × 8 or 16 × 16, serving as the atomic unit for algorithms, such as
JPEG compression.

• Blob: Is an image region defined by properties like brightness, distinct
from surrounding areas.

• Tensor: Is a multi-dimensional structure encapsulating complex data; a
2D tensor represents greyscale images, while a 3D tensor handles colour
images, considering width, height, and colour channels. In deep learn-
ing, tensors provide a concise mathematical representation of the prob-
lem.

• Tile: Is a unique image portion, often rectangular, acting as a process-
ing or representation unit. Unlike overlapping patches, tiles traditionally
denote non-overlapping image regions, ensuring each pixel’s unique tile
membership. Tiling affects memory access patterns and storage; for in-
stance, accessing an image row might require data fetching from multi-
ple tiles if stored tile-by-tile.

73

Understanding data type precision is essential as it impacts accuracy and
hardware suitability. Algorithms requiring higher precision will use floating-
point datatype, which is better supported by the FP hard blocks within CPU or
GPU architectures, while FPGA solutions suit integer-based calculations. Data
primitive choice impacts memory, bandwidth, and computational efficiency.
Successful imaging pipeline design hinges on aligning data primitive attributes
with processing unit capabilities, thereby optimising image processing work-
flow in terms of accuracy, efficiency, and hardware compatibility. An optimal
pipeline balances various primitives for each operationwhilemaintaining high
accuracy.

Access Patterns:

Image pixel locality in memory refers to how the spatial arrangement of pixel
data impacts the efficiency of image processing tasks. When pixels are stored
in memory, their arrangement influences data access efficiency. Locality in
memorymeans nearby pixels in the image are stored adjacently, aiding faster
data access. Various access patterns are discussed below:

• Sequential Access: Involves accessing pixels one after the other, typi-
cally in row-major or column-major order.

• Random Access: Retrieves pixels in a non-sequential manner based on
algorithmic requirements.

• Neighbourhood Access: Relates to the pixels surrounding a specific
pixel, often used in operations with kernels or local filters.

• BlockAccess: Dealswith a contiguous regionof pixels, common in block-
based algorithms or compression methods.

• Strided Access: Refers to the method where pixels are accessed at reg-
ular intervals or ’strides’.

• Pyramidal Access: Is associated with multi-resolution representations,
such as image pyramids.

• Scanline Access: Involves accessing entire rows or columns of pixels
simultaneously, often seen in raster operations.

• Tile-based Access: Focuses on square or rectangular pixel tiles, crucial
in tiled rendering or processing.

74

Efficient memory access is crucial in real-time imaging due to computer
memory hierarchies. Pixels stored close in memory can be loaded into faster
cache levels, reducing time spent waiting for data from slower memory. In
image processing, operations like convolution require accessing nearby pix-
els. Locally stored pixels minimise cache misses and improve computational
performance. Techniques like tiling, memory padding, and cache-aware algo-
rithms enhance processing efficiency. By aligning pixel data in memory with
spatial arrangement and optimising memory hierarchy, image processing al-
gorithms can leverage hardware effectively for faster performance.

Hardware Characteristics & Edge Handling:

It is necessary to understand the capabilities and limitations of each hard-
ware architecture to obtain optimum accuracy, area and speed of imaging al-
gorithms. These depend on particular hardware properties such as bit-width,
clock rate, memory location, data type and data dependency. Image process-
ing algorithms perform poorly on memory systems due to memory hierarchy
latency bottlenecks and high cachemiss rates. Additionally, architectures con-
taining many processing units require careful division of tasks to avoid load
imbalance.

Edge handling involves strategies when operations, such as filtering, con-
volution andmorphological transformations, are applied near the boundaries
of an image. Since these algorithms often require neighbouring pixel values,
challenges arise at the image edges where full neighbourhoods are unavail-
able. Commonedgehandling techniques include zero-padding (extending the
image with zeros), replication (duplicating the edge values), reflection (mirror-
ing the adjacent pixels), and circular (considering the image as a continuous
loop). Different edge handling techniques can lead to non-uniform or non-
sequential memory access patterns. In addition, the choice of method can
influence the resultant image, especially in terms of artefacts or discontinu-
ities at the boundaries. Proper edge handling is crucial to ensure consistent
and artefact-free processing results.

75

Optimisations & metrics

The optimisation attribute captures accelerator agnostic optimisations for im-
age processing algorithms. The attribute provides a repository of optimisa-
tions that helps designers pick and tune algorithms to find the optimal com-
bination within their design space for specific use cases. These optimisations
focus on the inherent properties of the algorithm, such as reducing compu-
tational complexity, improving data access patterns, or refining logical struc-
tures. The primary reasoning is their broad applicability and ensures a per-
formance baseline. The improvements realised are typically consistent across
various hardware architectures, from CPUs and GPUs to FPGAs and ASICs.

Themetric attribute standardises performance indicators frombenchmark-
ing literature, facilitating an understanding of trade-offs. Metrics such as run-
time assess algorithmic execution speed, throughput quantifies data processed
over time, and energy per operation provides insights into energy efficiency.
For neural networks, accuracy measures how often the model is correct, pre-
cision looks at how many of the positive identifications were actually right,
and the F1 score balances precision against recall.

4.2.3 Heterogeneous Benchmarking Development Flow

Heterogeneous hardware addresses the growing complexity ofmodernwork-
loads by combining different processing units, such as CPUs, GPUs, and other
accelerators, within a single system. This approach optimises performance
and energy efficiency for specific tasks, leveraging the strengths of each com-
ponent. However, targeting these platforms remains a significant challenge
to address.

Figure 4.2: Framework Pipeline for Heterogeneous Image Processing

76

Therefore, To effectively exploit the power of heterogeneous architectures,
a robust development flow is crucial. Such a workflow not only aids in pin-
pointing the optimal architecture but also streamlines the entire development
process. As depicted in Fig. 4.2, a comprehensive heterogeneous develop-
ment pipeline describes a systematic and standardised approach for imple-
mentation. This structured flow ensures that developers can seamlessly inte-
grate various computational resources, leverage specialised hardware capa-
bilities, and achieve optimal performance across multiple platforms.

Characteristic Analysis: The first stage involves identifying certain prop-
erties of an algorithm discussed in 4.2 and building a model of data, which
helps find suitable architectures. Starting with workload characterisation pro-
vides a comprehensive overview of the algorithm’s computational and data
demands, potentially giving insight into areas where algorithms can be par-
titioned. Specific algorithms require higher precision, which can impact the
choice of the target architecture. However, trading off accuracy for speed is a
potential opportunity. Memory access patterns significantly affect cache util-
isation and memory latency. It’s important to recognise an algorithm’s par-
allelism potential while being aware of data dependencies. Moreover, opti-
mising memory access patterns to align with the cache hierarchy can reduce
latency and enhancememory throughput. Furthermore, adapting algorithms
to harness specific hardware features, such as GPU threads, FPGA pipelines,
or TPU matrix multiply units.

Prototyping: This stage involves prototyping designs to identify the initial
performance of an architecture to establish a baseline benchmark. Profiling
code is done to identify performance bottlenecks, which offers valuable in-
sights into areas suitable for performance enhancement across various ar-
chitectures. Profiling aims to uncover the ’hotspots,’ sections of code where
execution time and resource consumption are disproportionately high. In ad-
dition, identifying task, data parallelismor pipelining opportunitieswhich ben-
efit certain accelerators. It is essential to pinpoint potential latency issues,
both in I/O operations and within memory, which can arise from slow data
transfers or inefficient data handling. Identifying loop structures is important
for performance; branching within loops in parallel or pipelined processors
can negatively affect performance. This is because branching can lead to di-
vergence, where different execution paths are taken simultaneously, causing

77

processing cores to remain idle. Loop unrolling is a common optimisation
technique that canmitigate the effects of branching by increasing the number
of operations in each loop iteration, reducing the loop’s overhead. However,
if a loop cannot be unrolled or tiled, it may be more efficient to execute the
algorithm on a higher clocked sequential core, which can handle branching.

Implementation: After selecting the appropriate architecture for an al-
gorithm, the next step involves its implementation. Depending on the cho-
sen accelerator, this process may entail simulating and synthesising designs
and conducting thorough verification. Finally, timing analysis involves evalu-
ating the propagation delays of signals through the circuit’s logic gates and
interconnects to ensure they meet the constraints set by the clock cycle time.
This helps in detecting and addressing potential timing violations. General-
purpose architectures will use compilation methods to high-level code into
machine-level instructions tailored for the instruction driven accelerators.

Evaluation & Optimisation: Post-implementation, performance tuning
and optimisation techniques are applied to ensure the algorithm runs effi-
ciently, maximising the hardware’s potential. Optimisations can be grouped
into four categories: hardware, software, domain-specific and algorithmic.
Hardware optimisations involve fine-tuning specific hardware configurations
or datatypes such as quantisation or bit-width adjustments. Software optimi-
sations are usually applied at the code level either manually or automatically
by compilers. These techniques can include inlining, dead code elimination,
and vectorization. Domain-specific is tailored for specific application areas
such as downsampling or separable filters. Lastly, algorithmic focus onmath-
ematical refinement to reduce complexity and use more efficient data struc-
tures. It’s also necessary to validate the implementation against reference
data-sets to ensure functional correctness. Throughout this process, contin-
uous profiling helps identify bottlenecks and areas for further optimisation.

4.3 Benchmarking Methodology

This section introduces two benchmarking strategies, micro and macro, each
offering distinct approaches to evaluate accelerator performance. Whilemicro-
benchmarking focuses on assessing individual algorithmsor pipelines,macro-

78

Figure 4.3: Low to High Complexity Image Processing Algorithms in the ISPPipeline
benchmarking provides an overall view by analysing fundamental operations
found in many algorithms within the ISP pipeline.

4.3.1 Micro Benchmarking Algorithms

Image processing pipelines contain many operations varying in complexity.
For a comprehensive set of results, many popular individual ISP algorithms
are chosen to bebenchmarked, listed in Table 4.1 and visually shown in Fig. 4.3.
The algorithms, Addition, Subtraction, Erode, Dilate, Box Filter, Gamma Correc-
tion, Linearization, and Demosaicing are chosen because they represent foun-
dational operations in image processing. These algorithms exhibit diverse
memory access patterns, computational intensities, and parallelism levels.
Their inclusion ensures a comprehensive evaluation of an architecture’s ca-
pability to handle point-wise and neighbourhood operations.

79

Table 4.1: List of Implemented Image Processing & Benchmarking Algorithms
Algorithm Complexity Operator Group Configuration Description
RGB2Grey Low Point Operations R:0.299 G:0.587

B:0.114 Convert RGB image to greyscale
Resizing Low Geometric Transformation 2.5x Upsampling Change image dimensions by interpolation

Image Addition Low Point Operations ~ Add two images pixel-wise
Image Subtraction Low Point Operations ~ Subtract one image from another pixel-wise
Gamma Correction Low Linear Filter γ = 2.2 Adjust pixel intensities using gamma values

Linearization Medium Point Operations ~ Correct non-linear sensor response
Erode Medium Morphological Operations 5x5 Erode image regions
Dilate Medium Morphological Operations 5x5 Dilate image regions

Box Filter Medium Linear Filter 5x5 Apply simple box averaging
Gaussian Filter Medium Linear Filter 5x5 Apply Gaussian blurring
Sobel Filter Medium Non-linear Filter 7x7 Detect edges using Sobel operator
Median Medium Non-linear Filter 5x5 Replaces each pixel value with the median value

White Balance Medium Linear Filter Gray World Adjust color balance in images
GEMM Medium Fundamental N=4096 General Matrix Multiply (GEMM) operation
FFT (DFT) Medium Fundamental radix-2 / R2C

Zero Padding Compute Fast Fourier Transform of signals
STREAM Medium Fundamental N=1 ×107 Evaluate memory bandwidth and latency

Demosaicing Medium Non-linear Filter Bilinear
Interpolation Convert Bayer-pattern image to RGB

SIFT High Feature Extraction 2 Octave 4 Scale Scale-Invariant Feature Transform for image matching
CNN (Classification) High Deep Learning ResNet18 &

MobileNetV2 Feature Extraction and Classification using Neural Networks

Complete Imaging Pipelines

Vision applications usually do not consist of one algorithm but contain many
pipelined together to form a complete system. In developing the proposed
framework, three exemplars were selected: 1) Edge Detection, 2) Feature Ex-
traction (SIFT) [153] and 3) Classification, representing low to high-level com-
plexity shown in Fig. 4.4. They are partitioned into nine sub-algorithms, namely,
RGB2Grey, Gaussian Filter, Sobel Filter, Gaussian Pyramid, Extrema Detection,Ori-
entation Assignment,Descriptor Generation, Resize, andCNN. The sub-algorithms
are common building blocks of many other image processing algorithms with
varying complexity and therefore are good candidates for benchmarking. For
example, Gaussian Pyramid is useful for analysis across different spatial scales
and Extrema Detection operations are often used in corner detection and im-
age blending algorithms.

The first pipeline is the edge detection pipeline, designed to identify and
emphasise edges within images. It starts with the conversion of RGB colour
information into greyscale, a method aimed at reducing redundant process-
ing. Following this, Gaussian filtering is used to achieve image smoothing and
noise reduction, essential for accurate edge detection. The Sobel edge detec-

80

Figure 4.4: Exemplar Image Pipelines Benchmarked on each Architecture.
tion algorithm, serving as the final stage within this pipeline, detects edges by
highlighting abrupt changes in pixel intensities.

The feature extraction pipeline captures important features presentwithin
images. The first step in the pipeline involves the construction of a Gaussian
pyramid, accomplished by generating multiple versions of the input image
through Gaussian filtering and downsampling. This pyramid plays a critical
role in identifying features across varying scales. Subsequently, extremum
detection is executed, facilitating the identification of keypoints or points of
interest within the image. These keypoints serve as reference points for sub-
sequent analysis and interpretation. Grayscale images is used as a input for
their simplicity in processing and their robustness to changes in illumination.

The classification pipeline can be found in many deep learning based ap-
plications, including vision. It begins with the conversion of RGB to greyscale
and subsequently, the image resizing operation is performed to standardise
dimensions, ensuring compatibility with the CNN architecture. The final stage
involves the application of the CNN algorithm, a state-of-the-art deep learn-
ing technique known for its proficiency in tasks related to image classification,
object detection, and segmentation.

81

4.3.2 Macro Benchmarking Algorithms

Many image processing algorithms share foundational operations, which can
be used to benchmark accelerators to gain better insight. This section reviews
a range of algorithms and their properties that make it an ideal case study for
evaluation.

Sustainable Memory Bandwidth in High Performance Computers

Stream memory benchmark [156] (STREAM) is a widely used performance
evaluation tool for measuringmemory bandwidth in computer systems. It as-
sesses the speed at which a system can read and write data to memory. The
benchmark primarily focuses on four memory access patterns: Copy, Scale,
Add, and Triad. In the Copy pattern, data is read from one memory location
and written to another. The Scale pattern involves reading data, scaling it by a
constant, and writing it to a differentmemory location. The Add pattern reads
two arrays, adds corresponding elements, and writes the result to a third ar-
ray. Finally, the Triad pattern combines scaling and addition operations. The
benchmark generates a set of memory performance metrics, including the
memory bandwidth, calculated as the amount of data transferred per unit
time, typically in gigabytes per second (GB/s). The memory bandwidth (B) can
be calculated using the following equation:

B = N × S

t
(4.1)

where N is the number of data elements accessed in the memory, S is
the size of each data element in bytes, and t is the time taken to complete
the memory operation in seconds. This equation gives us the memory band-
width in bytes per second. Image processing is very memory-intensive due to
the large amounts of data associated with higher resolution images and the
need for frequent data access during processing. Each pixel requires multiple
bytes of storage, andwhen processing, these pixels often need to be accessed
multiple times, especially in operations like convolution, filtering, or transfor-
mations. The STREAM benchmark becomes invaluable in this context, as it
provides insights into how efficiently an architecture can handle the memory
demands of image processing tasks.

82

Fast Fourier Transform

Fast Fourier Transform (FFT) is an algorithm that finds extensive applications
in signal processing, image analysis, and various fields where frequency do-
main analysis is essential. In image processing, FFT is particularly valuable
for transforming an image from its spatial domain representation to its fre-
quency domain representation. This transformation enables the identifica-
tion of various frequency components present in an image, offering insights
into patterns, textures, and other intricate details that may not be as evident
in the spatial domain.

The FFT algorithm computes the Discrete Fourier Transform (DFT) of a sig-
nal in an efficient manner, reducing the computational complexity fromO(n2)
toO(n log(n)), where n is the number of data points in the signal. In the case of
a 2D image, the FFT operation involves applying the DFT algorithm separately
to both the rows and columns of the image’s pixel values. The 2D FFT of an
image I(x, y) is expressed as:

F (u, v) =
N−1∑
x=0

M−1∑
y=0

I(x, y)e−j2π(ux
N

+ vy
M) (4.2)

Here, F (u, v) represents the frequency components in the transformed im-
age, N is the number of pixels along the x-axis,M is the number of pixels along
the y-axis, and (u, v) are the spatial frequency coordinates in the frequency
domain.

The resulting 2D FFT representation provides valuable information about
the image’s frequency content. Low-frequency components (corresponding
to slow changes in intensity) are typically located near the centre of the fre-
quency domain representation. High-frequency components (corresponding
to rapid changes in intensity, edges, and textures) tend to be found towards
the corners. By analysing this transformed image, practitioners can perform
tasks like filtering, denoising, compression, and other frequency-based ma-
nipulations to enhance or extract specific features from the original image.

83

Convolution (Matrix Multiply)

The two most common methods for convolution are general matrix multi-
ply (GEMM) and direct convolution. GEMM-based convolution relies on the
im2col algorithm [157], which results in a largememory footprint and reduced
performance. Alternatively, direct convolution has a lower memory footprint
but the performance is reduced due to the irregular memory access patterns.
GEMM can be can be expressed through Eq. (4.3):

Cij =
K∑

k=1
Aik ·Bkj (4.3)

Here, Cij refers to the element positioned at row i and column j within
the resultant matrix C, Aik signifies the element situated at row i and column
k in matrix A, and Bkj represents the element located at row k and column
j in matrix B. The summation spans across the index k from 1 to K, where
K corresponds to the number of columns in matrix A (which should equiva-
lentlymatch the number of rows inmatrix BB for accuratemultiplication). This
equation forms the core operation underlying the GEMM benchmark, which
orchestrates the calculation of the matrix product between A and B to yield
matrix C.

GEMM is found in image processing tasks that require matrix operations.
For example, convolutional neural networks (CNNs) extensively use matrix
multiplications for convolutional layers, andGEMM’s efficiency andparallelism
make it highly useful for accelerating these operations. Additionally, trans-
formations, filters, and image manipulations often involve matrix operations,
and therefore GEMM’s optimised implementations can significantly enhance
the performance of image processing algorithms.

4.3.3 Performance Metrics

This section focuses on evaluating implemented image processing algorithms
using two key metrics: execution time and power consumption. The analysis
provides insights into the strengths and limitations of the image processing
algorithms on a heterogeneous architecture.

84

Execution Time

In evaluating the performance of image processing algorithms, precise time
measurements are essential to capture the subtle differences across hard-
ware platforms. For the CPU, the C++ standard library’s high_resolution_clock

is employed, offering a fine-grained temporal resolution suitable for captur-
ing in microseconds. This method involves marking the start and end times
surrounding the algorithm’s execution and computing the difference to deter-
mine the elapsed time. On the GPU side, CUDA events were utilised to mea-
sure the time taken for the algorithms to run. CUDA events are specifically
designed to capture start and end times in a GPU’s environment, ensuring
accurate timing measurements that account for the asynchronous nature of
GPU operations. Irrelevant processes are stopped within the operating sys-
tem to prevent interference during the timing measurement. For the FPGA
evaluations, the behavioural simulation timing feature of the Vivado software
is used. This tool provides a detailed timing analysis, simulating how the algo-
rithm would perform on the FPGA, thereby offering insights into its expected
real-world performance. The implementations are written in C/C++/Verilog
and uses the time function built into Linux and system performance monitor
to measure the runtime of CPU/GPU/FPGA.

Power Consumption

Accurate power estimation is always challenging for software tools. However,
systematic steps are taken to minimise assumptions for better accuracy. The
approach used to measure the power consumption for the CPU and GPU is
obtained by using HWMonitor software. The power is initially measured to
determine the average base operating power. Then, each algorithm is exe-
cuted multiple times, and the power is measured during algorithm runtime.
The FPGA on-chip power consumption is measured using the reports from
the power analyser feature integrated into Vivado Design Suite. The hetero-
geneous implementation power consumption is calculated using both HW-
Monitor and Xilinx’s System Monitor IP. Static power consumption, refers to
the constant energy usage of a device when it’s idle, whereas dynamic power
consumption varies based on the workload or activity levels, resulting in fluc-
tuations in energy usage

85

Table 4.2: Summary: Hardware/Software Environment, Measurement Tools.
HardwareArchitecture

Model Clock
Software/
Libraries

Power
Measurement

Language Programmability

CPU AMD
5900x 4.8 GHz Pytorch 2.0 [24] /

OpenCV [23] HWMonitor [158] C++ Easy
GPU Nvidia

GTX 3070 1730 MHz Pytorch 2.0 /
OpenCV Nvidia-smi [159] C++ Easy

FPGA (HLS) Xilinx
ZCU102 300Mhz Vitis 2020.2 MaxPower-tool [160] /

Power Analyser C++ Medium
FPGA Xilinx

ZCU102 300Mhz Vivado 2022.2 MaxPower-tool /
Power Analyser Verilog Difficult

4.3.4 Measurement Environments

While FPGA can provide an accurate execution time in the simulation mode,
the same is not true for the CPU/GPU accelerators, as there might be other
software (including part of the operating system) competing for compute re-
sources. To mitigate this, the execution time for each bench-marked algo-
rithm is measured as the average of 1,000 iterations on CPU/GPU and clos-
ing all other non-core application processes before execution. The Nvidia
(CUDA) GPU also has an initialisation time often associated with setting up
the GPU context and memory allocations, can be significant, especially for
smaller tasks. The initialisation time is recorded for both with and without.
Software & Hardware Environments: OpenCV and Pytorch library is used
to implement image processing algorithms and CNNs on CPU and GPU plat-
forms. The FPGA implementation is written in Verilog, using Vivado Design
Suite 2019.2. Additionally, for comparison purposes, implementation was
donewith high-level synthesis (HLS) codeusing Xilinx Vitis 2019.2. Programma-
bility and flexibility vary across architectures shown in Table 4.2; CPUs and
GPUs are general-purpose, which makes them highly programmable for a
wide range of tasks, with languages like C++ being commonly used. FPGAs
are more inflexible since significant time is needed to change implementa-
tion designs and are typically crafted in hardware descriptor languages such
as Verilog. The hardware setup consists of a desktop PC running a Linux oper-
ating system, with a discrete GPU and FPGA connected via a high throughput
PCIe interface to reduce data latency.

86

4.3.5 Measurement Approach

The algorithms are implemented individually on eachhardware and then com-
bined to create the combined pipeline. For a fair comparison, open-sourced
(OpenCV) and CNN libraries(Pytorch) were employed, which are highly opti-
mised for their respective architectures. This is with exception of the Verilog
implementations that were developed manually. The parameter for each al-
gorithms used float precision and 5 × 5 kernel size. During the benchmark-
ing, for consistency, an uncompressed 8 bit 1920 × 1080 greyscale (Colour for
RGB2Gray algorithm) bitmap image for all experiments and abayerRAWequiv-
alent for Demoasiacing algorithm.

Weprovidemultiple performance indicators to compare between architec-
tures. For each algorithm, the runtime is measured on each hardware to de-
terminewhich accelerator executed the operation in the least amount of time.
The results from the runtimes are used to calculate the estimated throughput
using Eq. (4.4). The clock cycles per operation (CPO) in Eq. (4.5) gives insight
into the average number of cycles required to execute an instruction. To have
a fair comparison across the target hardware, the energy per operation is nor-
malised using Eq. (4.6):

Throughput = N

t
(4.4)

CPO = f × t

N
(4.5)

EPO = P × t

N
(4.6)

In these equations, N denotes the number of operations performed and
t signifies the runtime of the computational task in seconds. f represents
the frequency of the processing unit in hertz, and P is power consumption in
watts.

87

CPU GPU FPGA HLS0

10

20

30

40

50

60

70

80

90

100

110

0.
75

0.
45

0.
4

0.
543.

5

0.
28

0.
25

0.
31

15
.1

9.
88

8.
23 9.

65

10
5

64

71

77

25
.7

0.
51 1.
2 2.

53

1.
6

0.
3

0.
24

0.
442.

6

0.
3

0.
25 0.
882.

5

0.
18

0.
18

0.
24

9.
2

5.
5 6.
6

7.
19.

3

5.
7 6.
8

7.
1

43

7

14

23

10
.8

0.
25

0.
2

0.
31

21
.6

0.
19

0.
28

0.
55

32

0.
44 1.
1

1.
7

44

24

18

20

1.
8

1.
1

1.
4

1.
43.

3

0.
87

1.
24

1.
82

Exe
cut

ion
Tim

e(m
s)

R2G Gaussian Box MedianSobel Resizing Addition SubtractionErode Dilate Gamma Corr. LinearizationWhite Balance GEMM FFT STREAMDemosaicing

Figure 4.5: Execution times (milliseconds) for individual algorithms foundwithin imaging pipelines on each hardware architecture.

4.4 Experiments, Results & Discussion

This section presents the bench-marked results of each algorithm described
in 4.3 and an in-depth discussion. The section is divided into two parts, which
include the runtime, power consumption, EPO and throughput results for in-
dividual ISP algorithms and combined exemplar pipelines.

4.4.1 Individual ISP Algorithms

Fig. 4.5 & Fig. 4.6 plots the execution time (in milliseconds) and power con-
sumption (in Watts) of the selected benchmarking image processing algo-
rithms varying in complexity across different hardware architectures: CPU,
GPU, FPGA, and high-level synthesis implementation on FPGA. The results re-

88

CPU GPU FPGA HLS0

10

20

30

40

50

60

70

80

90

100

110

65

32

20

23

75

36

26 27

82

38

27

30

10
2

61

42

48

85

44

32 33

73

30

21

24

70

28

22 22

69

28

21 22

70

33

23 23

71

34

25 26

87

45

31

23

73

35

24

26

78

39

28

31

90

50

25
.5

30

88

46

24

29

85

41

26

33

77

38

30

31
.5

Pow
erC

ons
um

ptio
n(W

atts
)

R2G Gaussian BoxMedian Sobel ResizingAddition Subtraction ErodeDilate Gamma Corr. LinearizationWhite Balance GEMM FFTSTREAM Demosaicing

Figure 4.6: Power Consumption (Watts) for individual algorithms found withinimaging pipelines on each hardware architecture.
veal runtime variations among the architectures for each algorithm. Over-
all, the CPU performs competitively with the GPU, FPGA and HLS for lower
complexity algorithms cases such as RGB2GRAY algorithm, Addition, and Sub-
traction. It’s evident that algorithms involving a small number of operations,
such as colour channel conversion, do not require many computational cores
to leverage parallelism or memory access requirements. However, the CPU’s
performance starts to decline as the complexity of the algorithms increases,
as seen in cases like Sobel, Gamma Correction, GEMM, and FFT, where the large
array processing capabilities offeredby theGPUand FPGAbecomemorepromi-
nent. On average, the CPU is 4.5× and 4.35× slower than the GPU and FPGA,
respectively.

Across most algorithms, the GPU consistently demonstrates its capability
for calculations that require a great amount of multiply and accumulate op-

89

erations such as GEMM where its vast number of cores are fully occupied. Al-
though FPGAs also contain many processing blocks, their quantity is typically
far fewer thanGPUs, thus having a small increase in runtime. The results show
that GPU implementations outperform FPGAs for larger data/kernel sizes but
underperform for smaller sizes where the memory latency and kernel initial-
isation overhead become significant.

Non-linear algorithms such as Median, Erode and Dilate have a significant
impact on all architectures due to having unconventional operations which
do not have specialised hard blocks to compute them. In addition, branch-
ing conditions involve irregular memory access patterns. The impact can be
seen from the GPU and FPGA results, which jump in runtime from linear to
non-linear filters where parallelisation is inhibited and the kernel is not sep-
arable. The Gamma Correction is another non-linear algorithm which oper-
ates on a pixel-wise basis, modifying pixel intensities based on their origi-
nal values and gamma factors. Division operations are generally more com-
plex and relatively slower compared to multiplication and addition but can be
pipelined in hardware. Therefore reducing the overall runtime on all archi-
tectures and requiring more resources to compute. The HLS implementation
proved competitive in runtime with the hand-written FPGA and GPU for many
low-medium complexity algorithms in which the compiler can leverage pre-
written functions or libraries. On the contrary, algorithms such as Gamma
Corr. or Demosiacing, which are implemented without using pre-optimised li-
braries, required more compiler effort to generate HDL, resulting in slightly
slower execution times.

Related to power consumption, the CPU consumes the most energy in all
cases. As the algorithm complexity increases, more power is consumed. The
FPGA and HLS are 27% and 7.5%more energy efficient than the GPU in nearly
all algorithms, which reveals that direct hardware designs have much less
power overhead than the GPU, which needs to support other processes such
as host communication. Table 4.4 presents average reduction ratios for each
algorithm relative to CPU energy consumption. The GPU exhibits a higher en-
ergy reduction ratio inWhite balance, Sobel, Gamma and GEMM, which reveals
that the higher clocked GPU can execute the algorithms faster while offsetting
the higher operating power consumption.

The algorithm throughput and energy per operation in nanoJoules, are

90

RGB
2GR

AY
Gaus

sian BoxMed
ianSobe

l
Resiz

e
Imag

e Ad
d

Imag
e Su

b
Erod

e
Dilat

e

Gam
ma C

orr

Line
arisa

tion

Whit
e Ba

lanceGEM
M FFT

STRE
AM

Dem
osaic

ing
100

101

102

103
Thr

oug
hpu

t(G
iga

ops
/s)

CPU GPU FPGA HLS

Figure 4.7: Throughput for individual algorithms found within imagingpipelines on each hardware architecture (log scale)
shown in Fig. 4.7 and Fig. 4.8. Using nJ, as opposed to watts, offers a more
granular and clearer measurement. The trend remains, with CPU lagging in
throughput and EPO compared to the other architectures for all algorithms.
Although in RGB2GRAY, Median & FFT, the CPU is closer to the other accelera-
tors in both metrics due to lower complexity, input size and non-linearity of
the algorithms, which don’t map well to highly parallel hardware. The GPU
consistently maintains its higher throughput capabilities, as shown by the
graphs and lower energy per operation on larger data sized algorithms. The
FPGA achieves closer results to the GPU, but being clocked lower and hav-
ing fewer processing cores results in a slight performance decrease. The
HLS tool exhibits comparable performance, closely trailing the GPU and FPGA

91

RGB
2GR

AY
Gaus

sian BoxMed
ianSobe

l
Resiz

e
Addi

tion

Subt
racti

onErod
e
Dilat

e

Gam
ma C

orr

linea
risat

ion

Whit
e Ba

lanceGEM
M FFT

STRE
AM

Dem
osaic

ing
10−1

100

101

102

Ene
rgy

Con
sum

ptio
n(n

J/O
p)

CPU GPU FPGA HLS

Figure 4.8: Energy per operation (EPO) for individual algorithms found withinimaging pipelines on each hardware architecture (log scale)
in most algorithms. Although it experiences a slight performance lag which
is attributed to challenges in hardware translation, this setback is mitigated
by leveraging optimised pre-written functions used in STREAM. In such algo-
rithms, the HLS tool demonstrates comparable throughput performance to
hand-optimised FPGA implementation.

4.4.2 Combined ISP Pipelines

The combined image processing pipeline algorithm for execution times is re-
ported in Fig. 4.9. The runtime results indicate nearly a 3.46×, 2.92×, and 1.79×
order of magnitude improvement going from CPU to GPU, FPGA, and HLS, re-

92

CPU GPU FPGA HLS10−1

100

101

102

103

Exe
cut

ion
Tim

ein
ms

(log
sca

le)
R2G Gaussian Sobel Edge TotalGsn Pyd Extrema Orientation DescriptorSIFT Total Resize CNN Total

Figure 4.9: Execution times (milliseconds) for combined image processingpipelines on each hardware architecture. Some bars that don’t appear aredue to values being small
spectively. TheGPUalso has a slightlymarginal∼ 0.56× runtime improvement
over the FPGA implementation and is closer to a double order of magnitude
improvement than the HLS. The memory transfer results in the table show
that the latency for each algorithm ranges from 20 ∼ 70ms for the CPU and
GPU. In contrast, the FPGA can take advantage of stream processing pixels to
minimise memory access for most algorithms.

In the execution time of Edge Total and CNN Total pipelines, the improve-
ment between accelerators is minimal in comparison to the SIFT Total, which
has substantial differences between each platform. The Gaussian Pyramid
stage within SIFT has the largest contribution to overall SIFT Total execution
time. The result canbe attributed to imagefilter algorithmswithmanymultiply-
and-accumulate operations, whichmap well to the parallel processing of GPU
and FPGAs due to their high number of compute cores. In contrast, the CPU

93

CPU GPU FPGA HLS

10

20

30

40

50

60

70

80

90

100
67

34

20

23

77

36

26 27

86

44

32 33

90

48

38 39

82

42

34 36

78

33

26 26

82

36

24 24

67

29

20 21

86

51

40

46

68

30

21

24

90

55

42

45

Ene
rgy

Con
sum

ptio
n(W

atts
)

R2G Gaussian SobelEdge Total Gsn Pyd ExtremaOrientation Descriptor SIFT TotalResize CNN Total

Figure 4.10: Power Consumption (Watts) for combined processing pipelineson each hardware architecture.
suffers due to the lack of processing cores where parallelism is needed, re-
sulting in poorer execution time. In addition, the power consumption results
in Fig. 4.10 indicate that the FPGA consumes 1.4 ∼ 6x less power in the Gaus-
sian Pyramid stage than the CPU and GPU, with the HLS implementation being
slightly less power efficient. The architecture of FPGAs enables tight-knit de-
signs without additional power consumption by other support functions. Fur-
thermore, the efficiency is evidenced in the Sobel algorithm; the FPGA makes
use of the DSP blocks, which consumes less power, although the algorithm
contains more than double the numerical operations than Box or Gaussian.

94

RGB
2GR

AY
Gaus

sian Sobe
l

Edge
Tota

l
Gsn

Pyd
Extre

ma

Orie
ntati

on
Desc

ripto
r
SIFT

Tota
l
Resiz

e
CNN

Tota
l10−3

10−2

10−1

100

101

102

103

Thr
oug

hpu
tin

Gop
s

CPU GPU FPGA HLS

Figure 4.11: Throughput of each algorithm on hardware platforms (log scale)for combined processing pipelines.
4.4.3 Energy Consumption & Throughput Results

The plots in Fig. 4.11 & Fig. 4.12 show the throughput and energy consumed
per operation. The throughput difference between each accelerator for low
complexity/arithmetic algorithms such as R2G was consistent, with all three
accelerators are comparable. However, the gap widens between CPU and the
other hardware in throughput from Gaussian to CNN Total. Comparing GPU
and FPGA implementations, the FPGA outperforms in throughput for Edge To-
tal. The hand-written FPGA is able to stream algorithms more effectively than
the GPU without overhead CPU memory management latency. Furthermore,
the core initialisation and allocation of the GPU does not offset the time it
processes for the Gaussian and Resize algorithms.

95

RGB
2GR

AY
Gaus

sian Sobe
l

Edge
Tota

l
Gsn

Pyd
Extre

ma

Orie
ntati

on
Desc

ripto
r
SIFT

Tota
l
Resiz

e
CNN

Tota
l

10−1

100

101

102

103

Ene
rgy

Con
sum

ptio
nin

nJ/O
p

CPU GPU FPGA HLS

Figure 4.12: Energy per operation (EPO) for each algorithm on hardware plat-forms (log scale) for combined processing pipelines.
The GPU and both FPGAs consume ∼ 2x less energy per operation com-

pared to the CPU for Gaussian Pyramid, Extrema, Orientation algorithms. This
result is because many cores are at full occupancy which start to compute
more data in parallel thus increasing throughput. The HLS implementation of
Orientation andDescriptor found in SIFT algorithmhasworse energy consump-
tion per operation than the hand-written FPGA and GPU. The throughput loss
in the descriptor algorithm for GPU and FPGA is due to high data dependency,
which leads to sequential processing. In some algorithms, the GPU consumes
less energy per operation than the FPGA. The lower power consumption is
due to processing the algorithm faster on the GPU than the FPGA to offset
the high energy usage from the clock speed and support functions. Table 4.5
summarises the results of each calculation (Throughput, CPO, Energy Con-

96

sumption per Operation).

4.4.4 Discussions

The results highlight the areas where there are clear performance gaps in the
implementations on each accelerator. For example, the HLS may not be the
best approach to implement all algorithms due to the compiler not optimally
translating custom C++ code to Verilog, resulting in performance degradation
compared to hand-written FPGA code. Therefore, our benchmarking frame-
work contains a consistent set of metrics to assess various implementations
and understand the trade-offs between each target hardware. The results
from the framework indicate two generic conclusions: 1) FPGAs are better
suited to meet power budget, whereas GPUs can achieve faster execution
time (as anticipated), and 2) most optimised performance can be achieved
through heterogeneous computing, especially in real-time imaging.

For example, in implementing SIFT, the sub-algorithms Gaussian Pyramid
and Descriptor Generation are better suited to GPUs due to faster execution
time and throughput, whereas Extrema Detection and Orientation are worthy
of targeting FPGAs due to their energy consumption profile. For the first
two, GPU consumes ∼1 & ∼8 nanoJoule more energy per operation, respec-
tively, but in trade for significant speedup. On the contrary, the latter ones
are closely comparable using the throughput and execution time metrics on
the GPU and FPGA. However, the power consumed per operation for both
algorithms is significantly lower for the FPGA, and hence, the FPGA is better
suited. Therefore, partitioning SIFT to target a heterogeneous architecture
would benefit fromboth power and speed performance improvements. How-
ever, it is worth noting that such partitioning will incur the cost of frequent
memory transfer between architectures.

In the case of the edge detection pipeline from RGB2GRAY to Sobel, the GPU
is ∼ 2x faster than the FPGA but at the cost of more energy consumption.
Therefore, it may be ideal to select the FPGA platform, especially within an
embedded system with low power constraints. Furthermore, the low latency
of FPGAs would achieve better execution time if the GPU initialisation and
memory transfer time are taken into account. Therefore, when considering
the deployment of an algorithm on a GPU, it’s vital to ensure that the speedup

97

gained from the GPU’s parallel processing capabilities outweighs this initial
transfer overhead. If the algorithm doesn’t run sufficiently fast on the GPU to
compensate for this initialisation time, it might not be the optimal choice for
real-time or low-latency requirements. In such cases, relying on low-latency
architectures such as FPGA offers better overall performance. This highlights
the importance of a holistic evaluation of execution times, factoring in initial-
isation and processing time, before deciding on the accelerator. Additionally,
GPUs require a CPU to allocate tasks and manage memory which means ad-
ditional idle power being consumed.

In the CNN pipeline, the FPGA computes the RGB2GRAY and Resize faster
than the other architectures but is 1.45× slower in CNN inference compared
to GPU. However, when considering power consumption and image transfer
latency, it is better to pipeline all the operations on an FPGA. The GPUmay be
better suited to trainingmodels or executing larger CNNs that are too big to fit
onto FPGA logic. The hand-written FPGA is highly sensitive to implementation
and optimisations but allows more granular control over design, while GPUs
benefit from a mature ecosystem of compilers and tools. These compilers
can automatically optimise and implement core operations, often with high
efficiency.

In terms of qualitative visual quality, images processed by CPU, GPU, and
FPGA all appear similar since the precision is kept the same for each algo-
rithm. However, for a more comprehensive assessment, deeper analysis can
be conducted using visual metrics algorithms (e.g., SSIM, RSME) or through
human-based visual experiments.

4.5 Conclusions

This chapter discusses the importance of understanding the properties of im-
age processing algorithms to determine which hardware accelerator is suit-
able and if it can benefit from heterogeneous architecture, especially for real-
time vision applications. To facilitate such insight, a benchmarking frame-
work is proposed to observe the features of image processing algorithms
and provide a consistent set of metrics to identify trade-offs in performance
and energy efficiency of various hardware accelerators, including CPUs, GPUs

98

and FPGAs. We selected commonly used low, medium and high-level im-
age processing operations as exemplars, dissected them in sub-algorithms,
and benchmarked their throughput and energy consumption profiles on each
hardware. The results indicate that partitioning algorithms based on their
memory latency, energy consumption and throughput profiles have the po-
tential for efficient deployment on heterogeneous hardware in achieving op-
timised performance at a lower power.

The performance variations are influenced by factors such as parallelism,
memory access patterns, and the capability of each architecture to map algo-
rithmic operations efficiently. Algorithms that contain large data size parallel
operations and have regular memory access patterns tend to perform well
on GPU, while FPGA and HLS architectures may perform better for smaller
data sized operations. However, both face challenges optimising for irreg-
ular memory access patterns and complex algorithmic computations. The
FPGA delivers great performance relative to its size, clock and processing re-
sources, but the specialised nature of its architecture is highly sensitive to
how the design is implemented. Translating HLS code to hardware can intro-
duce overheads, potentially affecting performance. While HLS tools expedite
design cycles, they might not always match the optimisation of manual hard-
ware designs, leading to possible inefficiencies in resource allocation and data
paths.

99

Table 4.3: Execution times (ms) of combined pipeline (Total) and their corre-sponding algorithms includingmemory transfer.

Pipeline Algorithm CPU GPU FPGA HLS

EdgeDetection
RBG2GRAY 20.77 49.48 0.4 0.53Gaussian 24 51.31 0.25 0.31Sobel 58.23 45.33 1.2 2.53Edge Total 63.45 51.4 1.44 1.6

FeatureExtraction
GaussianPyramid 1118 3 6 74
ExtremaDetection 133 2 3 34

OrientationMagnitude 128 1 2 28
Descriptor 50 1 2 17SIFT Total 1434 57 13 153

Classification
RBG2GRAY 20.34 48.43 0.40 0.53Resize 21.4 51.55 0.24 0.44CNN 2245 280 234 265CNN Total 2570 310 254 285

Table 4.4: Reduction Ratios Relative to CPU Energy Consumption for Individ-ual Algorithms. (Highest reduction ratio in bold.)
Operation Group Algorithm GPU FPGA HLSRGB2GRAY 3.39x 6.09x 3.93xImage Preprocessing Resize 12.98x 23.17x 11.06xImage Add 21.67x 33.09x 9.40xImage Arithmetic Image Sub 34.23x 45.63x 32.67xGaussian 26.04x 40.38x 31.36xBox 3.30x 5.57x 4.28xSobel 160.15x 56.89x 26.16xImage Filters

Median 2.82x 3.70x 2.98xWhite Balance 227.37x 214.90 x 98.82xLinear Algorithms Linearisation 90.10x 164.25x 97.82xErode 3.55x 4.24x 3.63xDilate 3.41x 4.22x 3.48xGamma Corr 11.88x 8.62x 7.07xNon-linear Algorithms
Demosaicing 7.69x 6.83x 4.43xGEMM 130.91x 102.67x 56.47xFFT 3.51x 8.96x 6.68xFundamental STREAM 3.39x 4.20x 3.31x

100

Tab
le4

.5:
Alg

orit
hm

AllM
etri

csR
esu

ltS
um

ma
ry:

Run
tim

e,T
hro

ugh
put

,Clo
ckp

erO
per

atio
m,

Ene
rgy

Con
sum

ptio
np

er
Op

era
tion

.
Run

tim
e(m

s)
Thr

oug
hpu

t(G
ops

)
CPO

(Clo
ckC

ycle
/O

p)
Ene

rgy
Con

sum
ptio

n/
Op

era
tion

(nJ
/O

ps)
Alg

orit
hm

Com
ple

xity
CPU

GPU
FPG

A
HLS

CPU
GPU

FPG
A

HLS
CPU

GPU
FPG

A
HLS

CPU
GPU

FPG
A

HLS
RGB

2GR
EY

Low
0.

75
0.

45
0.

40
0.

54
16

.5
9

27
.6

5
31

.1
0

23
.0

4
2.

89
×

10
−

1
6.

33
×

10
−

5
9.

65
×

10
−

3
1.

30
×

10
−

2
3.

92
1.

16
0.

64
1.

00
Res

izin
g

1.
6

0.
30

0.
24

0.
44

5.
18

27
.6

5
34

.5
6

18
.8

5
9.

26
×

10
−

1
6.

33
×

10
−

5
8.

68
×

10
−

3
1.

59
×

10
−

2
14

.0
8

1.
09

0.
61

1.
27

Add
itio

n
2.

6
0.

30
0.

25
0.

88
0.

80
6.

91
8.

29
2.

36
6.

02
2.

53
×

10
−

4
3.

62
×

10
−

2
1.

27
×

10
−

1
87

.7
7

4.
05

2.
65

9.
34

Sub
trac

tion
2.

5
0.

18
0.

18
0.

24
0.

83
11

.5
2

11
.5

2
8.

64
5.

79
1.

52
×

10
−

4
2.

60
×

10
−

2
3.

47
×

10
−

2
83

.1
9

2.
43

1.
82

2.
55

Ero
de

Me
diu

m

9.
2

5.
5

6.
6

7.
1

11
.0

4
18

.4
7

15
.3

9
14

.3
1

4.
35
×

10
−

1
9.

47
×

10
−

5
1.

95
×

10
−

2
2.

10
×

10
−

2
6.

34
1.

79
1.

49
1.

75
Dila

te
7.

1
5.

7
6.

8
7.

1
10

.9
2

17
.8

2
14

.9
4

13
.9

1
4.

39
×

10
−

1
9.

82
×

10
−

5
2.

01
×

10
−

2
2.

16
×

10
−

2
6.

50
1.

91
1.

54
1.

87
Box

15
.1

9.
88

8.
23

9.
65

6.
73

10
.2

8
12

.3
5

10
.5

3
7.

13
×

10
−

1
1.

70
×

10
−

4
2.

43
×

10
−

2
2.

85
×

10
−

2
12

.1
9

3.
70

2.
19

2.
85

Gam
ma

Cor
r.

43
7

14
23

0.
58

3.
55

1.
78

1.
08

8.
29

4.
92
×

10
−

4
1.

69
×

10
−

1
2.

77
×

10
−

1
15

0.
34

12
.6

6
17

.4
4

21
.2

6
Gau

ssia
n

3.
5

0.
28

0.
25

0.
31

29
.0

3
36

2.
88

40
6.

43
32

7.
76

1.
65
×

10
−

1
4.

82
×

10
−

6
7.

38
×

10
−

4
9.

15
×

10
−

4
2.

58
0.

10
0.

06
0.

08
Sob

el
0.

31
0.

41
1.

2
2.

53
0.

99
1.

62
1.

46
1.

35
6.

19
×

10
−

1
2.

72
×

10
−

6
1.

81
×

10
−

3
3.

81
×

10
−

3
10

.9
6

0.
07

0.
19

0.
42

Me
dia

n
10

5
64

71
77

7.
76

64
3.

20
16

6.
16

78
.8

1
4.

86
1.

08
×

10
−

3
2.

05
×

10
−

1
2.

23
×

10
−

1
10

6.
34

37
.6

5
28

.7
6

35
.6

5
Lin

ear
izat

ion
10

.8
0.

25
0.

20
0.

31
2.

88
12

4.
42

15
5.

52
10

0.
34

1.
67

1.
41
×

10
−

5
1.

93
×

10
−

3
2.

99
×

10
−

3
25

.3
5

0.
28

0.
15

0.
26

Wh
ite

Bal
anc

e
21

.6
0.

19
0.

28
0.

55
3.

46
39

2.
89

26
6.

61
13

5.
73

1.
39

4.
45
×

10
−

6
1.

13
×

10
−

3
2.

21
×

10
−

3
22

.5
7

0.
10

0.
11

0.
23

GEM
M

32
0.

44
1.

1
1.

7
7.

81
56

8.
18

22
7.

27
14

7.
06

6.
14
×

10
−

1
3.

08
×

10
−

6
1.

32
×

10
−

3
2.

04
×

10
−

3
11

.5
2

0.
09

0.
11

0.
20

FFT
44

24
18

20
2.

05
3.

76
5.

02
4.

52
2.

34
4.

65
×

10
−

4
5.

98
×

10
−

2
6.

64
×

10
−

2
42

.8
7

12
.2

2
4.

78
6.

42
STR

EAM
1.

8
1.

1
1.

40
1.

40
50

.1
7

82
.1

0
64

.5
1

64
.5

1
9.

57
×

10
−

2
2.

13
×

10
−

5
4.

65
×

10
−

3
4.

65
×

10
−

3
1.

69
0.

50
0.

40
0.

51
Dem

osa
icin

g
1.

82
0.

87
1.

24
1.

82
3.

35
12

.7
1

8.
92

6.
08

1.
43

1.
38
×

10
−

4
3.

36
×

10
−

2
4.

94
×

10
−

2
22

.9
8

2.
99

3.
36

5.
18

SIFT
Tot

al
Hig

h
14

29
7

16
15

3
1.

17
23

9.
63

12
9.

02
10

.9
6

6.
58
×

10
−

1
7.

82
×

10
−

6
1.

15
×

10
−

3
1.

53
×

10
−

3
73

.2
7

0.
21

0.
48

4.
20

Edg
eT

ota
l

43
1.

4
1.

2
1.

6
7.

29
22

3.
89

26
1.

20
19

5.
90

4.
09

7.
30
×

10
−

6
3.

58
×

10
−

3
2.

74
×

10
−

2
12

.3
5

0.
24

0.
15

0.
20

CN
NT

ota
l

24
70

45
7

65
0

98
0

0.
73

3.
93

2.
77

1.
83

6.
59
×

10
0

4.
44
×

10
−

1
1.

08
×

10
−

1
1.

63
×

10
−

1
12

3.
50

13
.9

6
11

.1
7

24
.5

0

101

5 Domain-Specific Optimisations

In recent years, real-time vision systems on embedded hardware have be-
come ubiquitous due to the increased need for different applications such
as autonomous driving, edge computing, remote monitoring, etc. Field Pro-
grammableGate Arrays (FPGA) offer the speed andflexibility to architect tight-
knit designs that are power and resource-efficient. It has resulted in FPGAs be-
coming integrated into many applications [161]. Often, these designs consist
of many low to high-level image processing algorithms that form a pipeline.
Increasingly, the race for faster processing encourages hardware application
developers to optimise the algorithms.

Traditionally, optimisations are domain agnostic and developed for gen-
eral purpose computing. The majority of these optimisations aim to improve
throughput and resource usage by increasing the number of parallel opera-
tions [162], memory bandwidth [163] or operations per clock cycle [164]. On
the contrary, domain-specific optimisations are more specialised in a partic-
ular domain and can potentially achieve larger gains in faster processing and
reducing power consumption. This chapter proposes domain-specific optimi-
sation techniques on FPGAs that exploit the inherent knowledge of the image
processing pipeline.

In demonstrating the proposition, a thorough analysis is presented of well-
known image processing algorithms, emerging CNN architectures (MobileNet
[165] & ResNet [166]), and Scale Invariant Feature Transform (SIFT) [167]. The
decision to include MobileNet is influenced by its popular use within embed-
ded systems, and ResNet is included for its consistently higher accuracy rates
compared to other available architectures. Additionally, SIFT is chosen for be-

102

ing the most popular feature extraction algorithm, owing to its performance
andaccuracy. Algorithmic properties are exploitedwith the proposeddomain-
specific optimisation strategies. The optimised design undergoes evaluation
and comparison with other general optimised hardware designs regarding
performance, energy consumption, and accuracy. The main contributions of
this chapter are:

• Proposition of four domain-specific optimisation strategies for image
processing and analysing their impact on performance, power and ac-
curacy; and

• Validation of the proposed optimisations on widely used representa-
tive image processing algorithms and CNN architectures (MobilenetV2 &
ResNet50) through profiling various components in identifying the com-
mon features and properties that have the potential for optimisations.

5.1 Domain-Specific Optimisations

Image processing algorithms typically form a pipeline with a series of pro-
cessing blocks. Each processing block consists of a combination of low, mid,
intermediate and high-level imaging operations, starting from colour conver-
sion, filtering to histogram generation, features extraction, object detection
or tracking. Any approximation and alteration to the individual processing
block or the pipeline have an impact on the final outcome, such as overall ac-
curacy or runtime. However, depending on the applications, such alterations
are expected to be acceptable as long as they are within a certain error range
(e.g., ∼ ±10%).

Many image processing algorithm operations share common functional
blocks and features. Such features are useful for forming domain-specific
optimisation strategies. Within the scope of this work, image processing algo-
rithms are profiled and analysed to enable potential areas for optimisations.
However, such optimisations impact algorithmic accuracy and therefore, it
is important to identify the trade-off between performance, power, resource
usage, and accuracy.

The hypothesis suggests that understanding of domain knowledge, e.g.,
processing pipeline, individual processing blocks, or algorithmic performance,

103

can be used for optimisations to gain significant improvements in runtime
and lower power consumption, especially in FPGA-based resource-limited en-
vironments. Based on the common patterns observed in a variety of image
processing applications, this section proposes four domain-specific optimisa-
tion (DSO) approaches: 1) downsampling, 2) datatype, 3) separable filter and
4) convolution kernel size. However, on the flip side, optimisation often leads
to lower accuracy in return for gains in speed and lower energy consump-
tion. The effectiveness of these optimisations is compared against bench-
mark FPGA, GPU and CPU implementations, showing the impact on accuracy.
Within the scope of this thesis, four optimisation strategies have been identi-
fied and are discussed below:

5.1.1 Optimisation I: Down Sampling

Down/subsampling optimisation reduces thedata dimensionalitywhile largely
preserving image structure and hence accelerates runtime by lowering the
number of computations across the pipeline. Sampling rate conversion oper-
ations such as downsampling/subsampling are widely used within many ap-
plication pipelines (e.g., low bit rate video compression [89] or pooling layers
in Convolutional Neural Network (CNN) [168]) to reduce computation, mem-
ory and transmission bandwidth. Image downsampling reduces the spatial
resolution while retaining as much information as possible. Many image pro-
cessing algorithms use this technique to decrease the number of operations
by removing every other row/column of an image to speed up the execution
time. However, the major drawback is the loss of image accuracy due to re-
moving pixels. down sampling optimisation used for each selected algorithm
is a bilinear interpolation, and both runtime and accuracy are measured.

Bilinear downsampling is a technique that reduces the number of pixels
in an image by computing each output pixel as a weighted average of its four
nearest input pixels. The weights, represented by interpolation factors αi and
βi, are determined based on the distances between the target output pixel
(x, y) and the neighbouring input pixels (xi, yi) in both the horizontal and ver-tical directions. These factors contribute to a smoothed, downsampled image
by interpolating colour values based on the surrounding pixel information.
Mathematically, the value of a downsampled pixel D(x, y) can be calculated

104

using the following equation:
D(x, y) =

4∑
i=1

αi · βi · I(xi, yi) (5.1)

WhereD(x, y) represents the downsampled pixel value at location (x, y) in the
downscaled image, and I(xi, yi) represents the intensity (colour value) of theneighbouring pixel (xi, yi) in the original image. Downsampling reduces the
image size between octaves in the ’Gaussian pyramid’ construction stage.

5.1.2 Optimisation II: Datatype

Bit width reduction through datatype conversion (e.g., floating-point (FP) to
integer) significantly reduces the number of arithmetic operations, resulting
in optimised runtime at lower algorithmic accuracy. Whilst quantising from
FP to integer representations is common in the software domain, one of the
advantages of reconfigurable hardware is the capability to reduce dimension-
ality to arbitrary sizes (e.g., 7, 6, 5, 4 bits) as a trade-off between accuracy and
power/performance.

Consider an image where each pixel has a floating-point value in the range
of 0 to 1. A straightforwardway to performquantisation is tomap these values
to a set of integers. One commonly used formula for this conversion is:

Q(x) = round(x× (2k − 1)) (5.2)
Here, Q(x) is the quantised value, x is the original floating-point value, and

k is the bit-depth (e.g., 8 for an 8-bit image). The function round rounds the
value to the nearest integer. This equation multiplies the floating-point value
by 2k − 1 (255 for an 8-bit image) and rounds it, converting the value into an
integer between 0 and 2k − 1. This process significantly reduces the data size
and computational requirements, albeit with some loss of information due
to rounding. The converted integer values can then be used in place of the
floating-point values for further processing tasks.

In imageprocessing,most algorithms are inherently developedusing floating-
point (FP) calculations. Although FP offers higher accuracy, it comes at the

105

expense of computational complexity and, therefore, increased resource and
energy consumption. A viable alternative is fixed-point arithmetic, where a
fixed location of the decimal point separates integers from fractional num-
bers. Opting for fixed-point representation can significantly improve compu-
tational speed, albeit at the cost of some accuracy. Here, a datatype conversion
optimisation is proposed, wherein all operational stages are converted from
FP to integer arithmetic. This conversion allows for an evaluation of the trade-
off between performance and accuracy.

5.1.3 Optimisation III & IV: Convolution

Convolution kernel size optimisation reduces computational complexity, which
is directly proportional to the squared size of the filter kernel size, i.e., O(n2)
or quadratic time complexity. Convolution is a fundamental operation em-
ployed inmost image processing algorithms thatmodify the spatial frequency
characteristics of an image. Given a kernel and image size n× n and M ×N ,
respectively, convolution would require n2 ×M ×N multiplications and addi-
tions. For a given image, complexity is dependent on the kernel size, leading to
a complexity ofO(n2). Reducing kernel size significantly lowers the number of
computations; for example, replacing a 5× 5 kernel with a 3× 3 kernel would
reduce the computation by a factor of ×2.7. Therefore, this is proposed as an
ideal target for optimisation, although it may come at the cost of accuracy.

1
4


1
2
1

 × 1
4
[
1 2 1

]
= 1

16


1 2 1
2 4 2
1 2 1

 (5.3)

Another convolution optimisation strategy is separable filters, which is a
type of linear filter that can be broken down into a series of 1D filters shown
in Eq.5.3, making it computationally efficient for image processing tasks. The
separability property stems from the ability to represent a 2D filter kernel
as the outer product of two 1D kernels. This means that instead of directly
convolving the image with a 2D kernel, one can first convolve it along the rows
with a 1D kernel and then convolve the result along the columns with another
1D kernel. The formula for a separable filter can be expressed as:

106

Figure 5.1: SIFT Algorithmic Block Diagram.

H(x, y) = F (x) ·G(y) (5.4)
where H(x, y) is the 2D filter kernel, F (x) is the 1D filter kernel applied

along the rows, and G(y) is the 1D filter kernel applied along the columns. By
separating the filtering process into 1D convolutions, the number of opera-
tions required is significantly reduced, leading to faster image filtering com-
pared to non-separable filters. Common examples of separable filters include
Gaussian filters and the Sobel operator for edge detection.

5.2 Case Study Algorithms

In this section, an overview of the representative algorithms targeted for op-
timisation is presented, as discussed in Section 5.1. Subsequently, the pro-
posed optimisations will be applied to enhance their performance.

5.2.1 SIFT

SIFT [167] is one of thewidely used prototypical feature extraction algorithms.
To demonstrate the proposed optimisations, various versions of SIFT have
been implemented, consisting of two main and several sub-components as
shown in Fig. 5.1 and described below.

Scale-Space Construction

Gaussian Pyramid The Gaussian pyramid L(x, y, σ) is constructed by taking
in an input image I(x, y) and convolving it at different scales with a Gaussian

107

(a) (b)
Figure 5.2: a) Scale-Space Hardware Block Diagram b) Extrema Detection inLocal Space/Scale Neighbourhood
kernel G(x, y, σ):

G(x, y, σ) = 1
2πσ2 e− x2+y2

2σ2 , (5.5)
L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (5.6)

Where σ is the standard deviation of the Gaussian distribution. The input
image is then halved into a new layer (octave), which is a new set of Gaussian
blurred images. The number of octaves and scales can be changed depending
on the requirements of the application.

The implemented block design reads pixel data of input images into a line
buffer shown in Fig. 5.2(a). The operations in this stage are processed in par-
allel for maximum throughput. This is due to significant matrix multiplication
operations, which greatly impact the runtime. This stage is the most compu-
tationally intensive, making it an ideal candidate for optimisation.

The Difference of Gaussian DOG(x, y, σ), in Eq.5.7 is obtained by subtract-
ing the blurred images between two adjacent scales, separated by the multi-
plicative factor k.

DOG(x, y, σ) = L(x, y, kσ)− L(x, y, σ). (5.7)
The minima and maxima of the DOG are detected by comparing the pix-

els between scales shown in Fig. 5.2(b). This identifies points that are best
representations of a region of the image. The local extrema are detected by
comparing each pixel with its 26 neighbours in the scale space (8 neighbour

108

pixels within the same scale, 9 neighbours within the above/below scales).
Simultaneously, the candidate keypoints with low contrast or located on an
edge are removed.

Descriptor Generation

Figure 5.3: Magnitude & Orientation Assignment and Keypoint DescriptorGeneration

Magnitude & Orientation Assignment Inside the SIFT descriptor process
shown in Fig. 5.3, the keypoint’s magnitude and orientation are computed for
every pixel within a window and then assigned to each feature based on the
local image gradient. Considering L is the scale of feature points, the gradient
magnitude m(x, y) and the orientation θ(x, y) are calculated as:

m(x, y) =
√

Lx(x, y) + Ly(x, y), (5.8)
θ(x, y) = tan−1

(
L(x, y + 1)− L(x, y − 1)
L(x + 1, y)− L(x− 1, y)

)
. (5.9)

Once the gradient direction is obtained from the result of pixels in the neigh-
bourhoodwindow, a 36bin histogram is generated. Themagnitudes areGaus-
sian weighted and accumulated in each histogram bin. During the implemen-
tation, m(x, y) and θ(x, y) are computed based on the CORDIC algorithm [169]
in vector mode to map efficiently on an FPGA.

109

Keypoint Descriptor

After calculating the gradient direction around the selected keypoints, a fea-
ture descriptor is generated. First, a 16 × 16 neighbourhood window is con-
structed around a keypoint and then divided into sixteen 4×4 blocks. An 8-bin
orientation histogram is computed in each block. The generated descriptor
vector consists of all histogram values, resulting in a vector of 16 × 8 = 128
numbers. The 128-dimensional feature vector is normalised to make it robust
from rotational and illumination changes.

SIFT Hardware Implementation

Figure 5.4: High-level block diagram of the SIFT algorithm on FPGA
The high-level hardware block diagram depicted in Fig. 5.4 of SIFT illus-

trates the individual modules that build up the complete algorithm.

110

Scale-Space Construction:

Figure 5.5: Gaussian Convolution Module Block Diagram.
To efficiently process the image data, the Gaussian convolution module

observed in Fig. 5.5 uses line buffers to store and process pixel data. As pixel
data streams into the FPGA, it is stored in the buffers organised in rows corre-
sponding to image rows. These line buffers hold a portion of the image data
needed to compute the convolution operation. Using line buffers, the FPGA
can process multiple pixels simultaneously, reducing latency and increasing
throughput. Furthermore, pre-calculated coefficients defining the approxi-
mated Gaussian weights are applied to the pixel values during filtering and
are stored in BRAM registers. The implementation uses separable filters, the
module first applies a one-dimensional Gaussian filter in the horizontal direc-
tion followed by another in the vertical direction.

In addition, handling boundary pixels is vital to preserve image integrity.
However, in this implementation focused on a 1920× 1080 image size, bound-
ary pixels are neglected to simplify hardware design.

Subsequently, adjacent levels of theGaussianpyramid are subtracted from
each other to obtain the DoG pyramid. This subtraction operation is pre-
formed in parallel betweeneach scale and the three resultingDoGare buffered.
Two row buffers are used for every DoG and form a 3× 3 neighbourhood for
extrema detection. Fig. 5.6 illustrates the design of maxima detector module

111

Figure 5.6: Extrema Detection Module Block Diagram.
where eachpixel is then compared to its 26 neighbors, and theminimummag-
nitude is computed to determine the local extremum. Each DoG buffers out-
put consists of three values that constitute one column of a 3x3 neighbouring
window. The DoG words are forwarded to a comparator circuit which com-
pares the middle pixel of DoG2 with its neighbours, and an OR gate indicates
if it’s an extremum. Note that the first row is processed on the fly without
requiring buffers, since DoG operation is a single-pixel operation and doesn’t
affect the boundaries. The width of these buffers depends on the range of
the DoG operation results.

CORDIC & Prewitt Mask Module:

Figure 5.7: CORDIC Module Block Diagram. [1]

In the proposed implementation, the first derivatives of G2, are produced

112

by applying Prewitt mask operator to generates the first-order derivatives of
the image with respect to both the x and y directions. The magnitude is ef-
ficiently computed using the sum of absolute values of G2

x and G2
y. This ap-proach replaces the square root operation traditionally used in gradient mag-

nitude calculations. After computation, the result is stored as 8 bits, retain-
ing only the integer part of the magnitude for subsequent calculations. The
gradient orientation is computed traditionally by using large Look-Up Tables
(LUTs) for precomputed arctangents and hardware resources for division op-
erations. However, the implementation uses Xilinx IP CORDIC module, which
solves trigonometric equations iteratively and also computes a broader range
of equations, including the hyperbolic and square root. The output orienta-
tion assignments are stored as a 6-bit integers.

Histogram & Normalisation Module:

In the SIFT descriptor generation stage, each keypoint contributes to his-
togram entries representing gradient orientations and magnitudes within a
local region. Keypoints may influence multiple orientation bins, leading to
limited parallelisation. To address this, the descriptor computation utilises
eight BRAMs, each dedicated to a specific orientation bin. These arrays inde-
pendently accumulates data from keypoints associated with a particular ori-
entation, enabling parallel processing. Keypoint coordinates and orientation
information are used to distributemagnitude contributions across the arrays.
The non-data dependent nature of each array allows for pipelined accumula-
tion and simultaneous processing of multiple keypoints. After processing all
the keypoints, an adder tree sums histogram values stored in the array.

Figure 5.8: Descriptor Normalisation Block Diagram

113

The unnormalised histogramdata is streamed into the finalmodule shown
in Fig. 5.8 that performs normalisation. The input data is converted into float-
ing point representation, to ensure accuracy and comparability with other
hardware architectures. Once, converted the data is stored into BRAM and
L1-norm of the histogram is calculated concurrently using DSPs. Each entry in
the histogram is subsequently divided by the computed L1-norm, followed by
a square root operation. The resulting normalised values are then converted
from floating-point to fixed-point representation (8 bit) to minimise storage
space. Furthermore, the outputs from each processing element are accumu-
lated into a unified output vector using a combination of FIFO buffers and a
multiplexer.

5.2.2 Digital Filters

 1 1 1
0 0 0
−1 −1 −1


(a) Box

1
16

1 2 1
2 4 2
1 2 1


(b) Gaussian

 1 1 1
0 0 0
−1 −1 −1


1 0 −1
1 0 −1
1 0 −1


(c) Sobel X & Y

Figure 5.9: Example approximated 3× 3 image filter kernels.
Digital filters are a tool in image processing to extract useful information

from noisy signals. They are commonly used for tasks such as smoothing,
edge detection, and feature extraction. Filters operate by applying a kernel,
or a small matrix of values, to each pixel of an image. The kernel is convolved
with the image, and the resulting output value is placed in the corresponding
pixel location of the output image shown in the Eq. (5.10). I(x, y) is the input
image and K(kx, ky) is the kernel. The convolution result O(x, y) is calculated
by:

O(x, y) =
∑
kx

∑
ky

I(x− kx, y − ky) ·K(kx, ky) (5.10)
The indices kx and ky correspond to the coordinates of the kernel K, x and

y correspond to the coordinates of the output image O.

114

5.2.3 Convolutional Neural Network

Figure 5.10: Typical layers implemented within CNN Architectures.
Convolutional Neural Networks are a class of deep neural networks typi-

cally applied to images to recognise and classify particular features. A CNN
architecture typically consists of a combination of convolution, pooling, and
fully connected layers shown in Fig. 5.10.

The convolution layers extract features by applying a convolution opera-
tion to the input image using a set of learnable filters (also called kernels or
weights) designed to detect specific features. The output of the convolution
operation is a feature map, which is then passed through a non-linear activa-
tion function, such as ReLU, to introduce non-linearity into the network. The
convolutional layers can be stacked to formadeeper architecture, where each
layer is designed to detect more complex features than the previous one. In
addition, it is the most computationally intensive layer because each output
element in the feature map is computed by repeatedly taking a dot product
between the filter and a local patch of the input, which results in a large num-
ber of multiply-add operations.

The pooling layers are responsible for reducing the spatial size of the fea-
ture maps while retaining important information. The most common types
of pooling are max pooling and average pooling. These layers typically use a
small window that moves across the feature map and selects the maximum

115

Table 5.1: Summary Table: Hardware/Software Environment &MeasurementTools
HardwareArchitecture Model Clock Software /Libraries Power

Measurement
CPU AMD 5900x 4.8 GHz Pytorch 2.0 [24] / OpenCV HWMonitor [158]
GPU Nvidia GTX 3070 1730 MHz Pytorch 2.0 / OpenCV Nvidia-smi [159]
FPGA Xilinx ZCU102 300Mhz Vivado 2022.2 /

Vitis 2020.2
MaxPower-tool [170] /

Power Analyser

or average value within the window. This operation effectively reduces the
number of parameters in the network and helps to reduce overfitting.

The fully connected layers make predictions based on the extracted fea-
tures. These layers take the output from the convolutional and pooling layers
and apply a linear transformation to the input, followed by a non-linear ac-
tivation function. The fully connected layer usually has the same number of
neurons as the number of classes in the dataset, and the output of this layer
is passed through a softmax activation function to produce probability scores
for each class. A CNN architecture also includes normalisation layers such as
batch normalisation, dropout layers that are used to regularise the network
and reduce overfitting, and an output layer that produces the final predic-
tions.

5.3 Experimental Results and Discussion

Figure 5.11: Filter Algorithms Applied onto Input Image
We verify the proposed optimisations on ’SIFT’, ’Box’, ’Gaussian’ and ’So-

bel’ (in Fig. 5.11) algorithms, as well as MobileNetV2 and ResNet50 CNN ar-
chitectures. This is achieved by creating baseline benchmarks on four target
hardware CPU, GPU and FPGA, followed by the realisations of the optimisa-
tions individually and combined. The CPU andGPU versions for Filter and SIFT

116

algorithms are implemented using OpenCV [23]. Pytorch library is used to im-
plement CNN architectures (ResNet50 &MobileNetV2) and optimisations. Ad-
ditionally, both architectures are pre-trained on the image-net classification
dataset. The FPGA implementation for all algorithms is developed using Ver-
ilog (SIFT/Filter) and HLS (CNN). All baseline algorithms and CNN models use
floating point 32 (FP32), and an uncompressed grayscale 8-bit 1920×1080 input
image is used for the SIFT algorithm, and each sub-operation is profiled. De-
tails of the target hardware/software environments and powermeasurement
tools are given in Table 6.1.

Dataset. The input images used in the CNN and Filter experiments are
from LIU4K-v2 dataset [171]. The dataset contains 2000 high resolution 3840×
2160 images with various backgrounds and objects.

5.3.1 Performance Metrics

As part of the evaluation process, we measure three different performance
metrics, namely, 1) execution time, 2) energy consumption and 3) accuracy.

Execution time

The execution timemeasured for the CPU and GPU platforms uses time func-
tion libraries to count the smallest tick period. Each algorithm/operation is
run for 1000 iterations and averaged to minimise competing resources or
other processes directly affecting the architecture, especially for the CPU ar-
chitecture. The GPU has an initialisation time which is taken into account and
removed from the results. The timing simulation integrated into Vivado de-
sign suite software is used to measure the time for the FPGA platform. The
experiments exclude the time of both the image read and write from exter-
nal memory. We compute the frame per second (FPS) as the inverse of the
execution time:

FPS = 1/Execution Time. (5.11)

117

Power Consumption

Two commonmethods used formeasuring power are software andhardware-
based. Accurately estimating power consumption is a challengeusing software-
basedmethods, which have underlying assumptions in their models andmay
not measure other components within the platform. In addition, taking the
instantaneous watt or theoretical TDP of a device is not accurate since power
consumption varies on the specific workload. Therefore, we obtain the total
energy consumed bymeasuring the power over the duration of the algorithm
executed. A script is developed to start and stop the measurements during
the execution of the algorithm and extract the power values from the soft-
ware.

With the use of a power analyser within the Vivado design suite and the
MaxPower-tool, themeasurement of FPGApower consumption is divided into
two parts, (1) static power and (2) dynamic power. Static power relates to the
consumption of power when there is no circuit activity and the system re-
mains idle. Dynamic power is the power consumedwhen the design is actively
performing tasks. The power consumption for the CPU and GPU is obtained
using HWMonitor and Nvidia-smi software. To have a fair comparison across
the target hardware for the SIFT algorithm, we normalise it as the energy per
operation (EPO):

Energy = (Power ∗ Execution Time). (5.12)
Additionally, We calculate the energy consumption for the Filter and CNN

algorithms:

EPO = (Power ∗ Execution Time)/Operations. (5.13)

Accuracy

With an expectation that the optimisations impact overall algorithmic accu-
racy, we capture it by measuring the Euclidean distance between the descrip-
tors generated from the CPU (our comparison benchmark) to the descriptor
output produced by the FPGA. The Euclidean distance d(x, y) is calculated in

118

Eq. (5.14) where x and y are vectors, and K is the number of keypoints gener-
ated. This accuracy measurement is only used for the SIFT algorithm imple-
mentation.

d(x, y) =

√√√√ K∑
i=1

(xi − yi)2. (5.14)
Subsequently, the accuracy for each Euclidean distance is calculated using

Eq. (5.15):
Accuracy = 100−

((Euclidean Distance
Max Distance

)
× 100

)
(5.15)

The Euclidean Distance denotes the distance between the two descriptor
vectors being compared, andMaxDistance represents themaximumEuclidean
distance found in the vector. The accuracy is transformed to have 100% in-
dicate identical descriptors, while 0% indicates completely dissimilar descrip-
tors.

We used root mean square error (RSME) to compare the input image to
the output images produced by each hardware accelerator to determine the
pixel accuracy. RMSE is defined as:

RMSE =
√√√√(1

n
)

n∑
i=1

(yi − xi)2 (5.16)
Where the difference between the pixel intensity values of output and input
(yi,xi) images. Divided by N, which is the total number of pixels in the image.

The accuracy of the CNN architecture is measured by taking the number
of correct predictions divided by the total number of predictions:

Accuracy = Number of Correct Predictions
Total Number of Predictions × 100 (5.17)

A high accuracy indicates that the model is making accurate predictions,
while a low accuracy suggests room for improvement in the model’s perfor-
mance.

119

5.3.2 Results and Discussions

The results and discussions section contains the evaluation of algorithms in
three categories, feature extraction algorithms (SIFT), filter algorithms (Box,
Gaussian, Sobel) and Convolution Neural Networks (MobilenetV2, ResNet50).

Table 5.2: SIFT: Performance against state-of-the-art
Octave,Scale Hardware Platform Image Size Clock(Mhz) Frame Rate(FPS)

Chiu [172] 2,4 Virtex-6 640× 480 100 30Mizuno [173] 2,4 65 nm CMOS 1920× 1080 N/A 30Vourvoulakis [174] 1,4 Cyclone IV 640× 480 21.7 70
Proposed 2,4 Zynq UltraScale+ 1920× 1080 300 502,4 Virtex UltraScale+ 1920× 1080 600 100

SIFT

We obtain results for FPGA implementations of the SIFT algorithm, consider-
ing various optimisations or combinations of them. Two sets of results are
captured for octave, scale of (2,4) and (4,5) as they are regularly reported in
the literature for SIFT implementation on FPGA. The results are primarily ob-
tained at a target frequency of 300 MHz for various components of SIFT and
execution time and accuracy are reported in Table 5.3 along with FPS num-
bers in Fig. 5.12.

In terms of individual optimisations on the base FPGA implementation,
down sampling and integer optimisations had the most reduction of accuracy
but in trade for a greater reduction of runtime. On the other hand, 3× 3 ker-
nel size (down from default 5× 5) had better accuracy results but with a small
improvement on the overall runtime. In the case of combined optimisations,
both down sampling and integer combinations greatly reduced the execution
times but at a cost of 8 ∼ 10% accuracy loss. In the most optimised case,
(4,5) and (2,4) configurations achieved 17 and 50 fps, at an accuracy of 90.18%
and 89.45%, respectively. The 10 ∼ 11% loss in accuracy in both configurations
can be attributed to the loss of precision and pixel information resulting in
imperfection in feature detection.

The comparisonwith optimisedCPUandGPU implementations is shown in

120

BaseFPGA 3X3Krnl Dsp(1/2) Int 3x3+Int Dsp+3X3 Dsp+Int Dsp+3X3+Int
0

10

20

30

40

50

60

70

80

23
.2

6

33
.3

3 37
.0

4 40

43
.4

8

41
.6

7 45
.4

5 50

10
.7

11
.2

3

13
.1

5

13
.5

1

15
.1

5

14
.7 15
.8

7

16
.6

7Fra
me

sPe
rSe

con
d(F

PS)

60

65

70

75

80

85

90

95

100

Acc
ura

cy(
%)

Octave/Scale: 2-4 Octave/Scale: 4-5

99.3498.82 98.9897.34
97.62

95.24
95.86

93.45
94.45

93.34
93.26

91.85 91.52
90.78 90.18

89.45

Figure 5.12: SIFT: FPS (Bars) and Accuracy (Dots) for each optimisation on bothconfigurations (octave, scale).
Table 5.5which includes total execution time and energy consumption per op-
eration (nJ/Op). Results indicate the optimised FPGA implementation achieved
comparable GPU runtime at 600 MHz but significantly outperformed them
when energy consumption statistics are taken into account. The GPU results
excluded the initialisation time, which would add greater latency to the over-
all runtime. In addition, the power consumption of the GPU is at 12.47nJ/Op,
whichwouldmake it a difficult choice for real-time embedded systems. On the
other hand, optimised FPGA implementations have better performance per
watt than the GPU and CPU. The comparison with the state-of-the-art FPGA
implementations is reported in Table 5.2, and results show major improve-
ments in the runtime even with larger image size and more or similar feature
points (∼ 10000). Finally, for completeness, we report the resource and power
usage statistics for optimised configurations at 300 MHz in Table 5.4.

121

Filter Implementations

Baseline Datatype 3X3 Kernel Dwnsmple Separable
0

5

10

15

20

25

30

0

14

12

8

10

6

2.
9

2.
6

2.
1 2.
4

1.
5

3.
2

2.
9

2.
3 2.
5

1.
8

12

10

6

8

4

2.
3

1.
9

1.
5 1.
8

1.
12.

5

2.
1

1.
6 1.
9

1.
3

30

27

23

25

15

3.
4

3.
1

2.
7 2.
9

1.
83.

2

2.
9

2.
4 2.
7

1.
6

Ex
ec
ut
io
n
Ti
m
e
(m

s)

CPU GPU FPGA

Box Gaussian Sobel

Figure 5.13: Filter: Runtime comparison for optimisations applied on eacharchitecture.
Fig. 5.14 & Fig. 5.13 plots the runtime and energy consumption of three im-

age processing filter algorithms (Box, Gaussian, and Sobel) with various optimi-
sations strategies applied to the baseline algorithm. Comparing the baseline
performance, the CPU architecture suffers themost in execution time and en-
ergy consumptionwhich can be attributed to the lack ofmany compute cores.
In contrast, GPUs and FPGAs exploit data parallelism and stream/pipeline pro-
cessing to significantly reduce runtime.

Both Fig. 5.14 & Fig. 5.13 show that the performance of bothGPU and FPGA
are comparable in both metrics studied. The GPU demonstrated a marginally

122

Baseline Datatype 3X3 Kernel Dwnsmple Separable
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0

1.
12

1.
03

0.
6

0.
95

0.
56

0.
1

0.
08

0.
04 0.

1

0.
08

0.
08

0.
07

0.
05 0.
08

0.
06

0.
91

0.
78

0.
5

0.
7

0.
36

0.
09

0.
06 0.
07 0.
08

0.
040.
06

0.
05

0.
04 0.
06

0.
04

2.
46

2.
27

1.
98

2.
32

1.
38

0.
12

0.
11

0.
1 0.
12

0.
1

0.
08

0.
07

0.
07

0.
08

0.
05

En
er
gy

Co
ns
um

pt
io
n
(Jo

ul
es
)

CPU GPU FPGA

Box Gaussian Sobel

Figure 5.14: Filter: Energy consumption comparison for optimisations appliedon each architecture.
better computation speed compared to the FPGA, with an average execution
time improvement of 9.45% for Box and Gaussian algorithms. On the other
hand, the FPGA has a 5.88% improvement for Separable Filter over GPU.

In the case for Sobel, the FPGA achieves a speedup of approximately 1.09×
over the GPU across all optimisation strategies. The smaller kernel size allows
the FPGA to use its DSP slices to efficiently compute the algorithm, whilst the
GPU operations do not fully occupy the compute resources available which
results in load imbalance and communication latency. Relative to power con-
sumption, the CPU experiences themost significant impact in all cases by con-
suming 1.19× Joules on average. The higher energy usage can be attributed to
their higher clock, complex memory hierarchy and lack of parallel capability.

123

The GPU has been observed to consume ∼ 1.36×more Joules than the FPGA.
The high energy cost can be derived from the base support/unused logic com-
ponents consuming static power. However, the FPGA operates on the least
energy consumed per clock due to its custom-written nature. The energy con-
sumption for seperable optimisation reveals similar results between the GPU
and FPGA. This is attributed to the GPU able to compute the algorithm faster
to offset the higher clock speed energy cost.

All optimisations, e.g Datatype, Kernel, Downsampling, and Separable Filters
optimisations had major improvements for each accelerator. Reducing the
kernel size to 3× 3 kernel size and applying Separable Filters had the most im-
pact due to lowering the number of operations computed during the convo-
lution operation. The Datatype and Downsampling optimisations had around
on average 12.24 ∼ 28.16% decrease in runtime for all algorithms. The optimi-
sation runtime results and accuracies of each filter algorithm are reported in
Table 5.6. In terms of image accuracy, downsampling has the most significant
difference compared to the original, which can be attributed to the rows that
are removed due to the algorithm.

CNN Architecture

Fig. 5.15 displays the runtime performances and classification accuracy of the
baseline and optimised CNN algorithms on each hardware architecture. The
results show that the CPU, GPU, and FPGA exhibit similar levels of perfor-
mance, with the GPU having an average improvement of 5.41 ∼ 12% over the
FPGA for the Downsampling optimisation in MobileNetV2 and the baseline for
ResNet50, respectively. The FPGA leads in the Datatype optimisation over the
GPU with a 6.25 − 11.1% reduction in time for both CNNs. The Datatype op-
timisation involves quantisation of the model’s weights from FP32 to 8-bit to
reduce complexity. The FPGA computes the quantised operations faster on
both architectures due to exploiting the DSP blocks and requiring no addi-
tional hardware logic for floating-point arithmetic. However, the quantised
model weights are unable to represent the full range of values present in the
input image, resulting in a ∼ 10% accuracy loss for all platforms. The Down-
sampling strategy has a slight improvement in runtime with minimal impact
on the accuracy, with a loss around ∼ 5%.

124

CPU GPU FPGA0

0.1

0.2

0.3

0.4

0.5

0.6

0.
25

0.
18 0.
190.

21

0.
16

0.
15

0.
23

0.
17 0.
18

0.
33

0.
22

0.
25

0.
25

0.
18

0.
16

0.
28

0.
2

0.
19Exe

cut
ion

tim
e(s

)
Baseline Datatype DownSampling

0

10

20

30

40

50

60

70

80

90

100

Acc
ura

cy(
%)

MobileNetV2 ResNet50

85
75

70

80

65
72

85
75

70

80

65
72

85
75

70

80

65
72

Figure 5.15: CNN: The graph compares execution time and accuracy acrossthree optimisation strategies (Baseline, Datatype, DownSampling) on CPU,GPU, and FPGA for two neural network models (MobileNetV2 and ResNet50).
In Fig. 5.16, the energy consumption graph shows that the CPU consumes

on average, 3.14× more energy than the other accelerators for both CNNs.
In addition, the ResNet50 architecture has more layers than MobileNetV2 and,
therefore, contains more operations, resulting in higher energy usage. In all
cases, the FPGA consumes the least amount of energy, 1.11 ∼ 3.55× less than
the CPU and GPU, to compute the image classification. The results show the
potential of reducing the computation time of CNNs by further applying the
proposed optimisations in a layer by layer basis, but at the cost of slight ac-
curacy loss. The optimisation results of each CNN architecture and accuracy
are reported in Table 5.7.

Consequently, larger images or complex networks with many layers and
larger filter sizes require more memory to store the weights and activations.
This leads to higher memory requirements, especially within real-time em-

125

CPU GPU FPGA0

5

10

15

20

25

30

35

22
.5

7.
2

6.
5

16
.8

6.
3

5.
25

19
.5

5

6.
4

6.
1

29
.7

9.
4

8.
75

21
.2

5

8.
1

5.
6

23
.8

8.
4

6.
65

Ene
rgy

Con
sm

ptio
n(J

oul
es)

Baseline Datatype DownSampling

MobileNetV2 ResNet50
Figure 5.16: CNN: Architecture Energy comparison of Model Datatype & InputImage Downsampling Optimisations on ResNet50 and MobilenetV2.
bedded systems where space is limited. However, applying optimisations can
alleviate the computational load, but careful consideration must be taken to
understand the trade-offs between runtime and accuracy depending on the
application. The Kernel optimisations could not be implemented on the cho-
sen CNN architectures, which would require heavily modifying the standard
convolution operation in both networks. This would completely change the
network, thus creating a new architecture.

5.4 Conclusion & Future Direction

This chapter proposes new optimisation techniques called domain specific op-
timisation for real-time image processing on FPGAs. Common image process-

126

ing algorithms and their pipelines are considered in proposing such optimi-
sations, which include down/subsampling, datatype conversation and convo-
lution kernel size reduction. These were validated on the popular image pro-
cessing algorithms and convolution neural network architectures. The opti-
misation results for CNN and Filter algorithms vastly improved the computa-
tion time for all processing architectures. The SIFT algorithm implementation
results significantly outperformed state-of-the-art SIFT implementations on
FPGA and achieved runtime at par with GPU performances but with lower
power usage. However, the optimisations on all algorithms come at the cost
of ∼ 5− 20% accuracy loss. Overall, Downsampling and datatype optimisation
resulted in the most significant reductions in execution time and energy con-
sumption.

The results demonstrate that applying domain-specific optimisations to in-
crease computational performance while minimising accuracy loss demands
in-depth and thoughtful consideration. Furthermore, it should be noted that
the optimisations selected in the experiment are non-exhaustive, leaving room
for further exploration.

One proposal for algorithms comprising multiple operation stages is to
use adaptive techniques instead of fixed integer downsampling factors, bit-
widths, and kernel sizes. These adaptive methods analyse the data and dy-
namically adjust the level of optimisation based on input characteristics. For
instance, adjusting the bit-width and downsampling factor according to the
specific input data within each stage can yield better results and strike amore
suitable trade-off between performance and accuracy. Several strategies can
be employed in the CNN domain to address the challenges. Quantisation-
Aware Training (QAT) andmixed-precision training enable themodel to adapt
to lower precision representations during training, reducing accuracy loss dur-
ing inference with quantised weights. Additionally, selective downsampling
and kernel size reduction of CNN architectures help retain relevant informa-
tion and preserve accuracy. Channel pruning can further offset accuracy loss
by removing redundant or less critical channels. As a result, employing these
strategies and considering hardware constraints makes it possible to strike
an optimal balance between accuracy and performance, unlocking the full
potential of efficient applications.

On the other hand, the drawback of traditional libraries and compilers is

127

that they often struggle to keep pace with the rapid development of deep
learning (DL) models, leading to sub-optimal utilisation of specialised acceler-
ators. To address the limitation, adopting optimisation-aware domain-specific
languages, frameworks, and compilers is a potential solution to cater to the
unique characteristics of domain algorithms (e.g., machine learning or image
processing). These tool-chains would enable algorithms to be automatically
fine-tuned, alleviating the burden of manual domain-specific optimisation.
Table 5.3: SIFT: Optimisation Result Summary on FPGA, 300 Mhz Configura-tion (Octave, Scale).

Gaussian Extrema Orientation Descriptor Total Runtime
(ms)

Overall Accuracy
(%)Operations (2,4) (4,5) (2,4) (4,5) (2,4) (4,5) (2,4) (4,5) (2,4) (4,5) (2,4) (4,5)

Baseline FPGA (ms) 19 45 10 18 9 16 5 14 43 93 98.82% 99.34%
Downsampling 13 40 4 13 5 10 5 13 27 76 95.24% 97.62%

Integer Arithmetic 11 38 4 14 5 8 5 14 25 74 93.45% 95.86%
3× 3 Kernel 14 43 6 15 5 14 5 14 30 86 97.34% 98.98%

Downsampling
+ Integer

9 38 4 8 4 7 5 10 22 63 90.78% 91.52%
Downsampling

+ 3× 3
9 38 5 12 5 8 5 10 24 68 91.85% 93.26%

Integer
+ 3× 3

9 36 5 11 4 9 5 10 23 66 93.34% 94.45%
Downsampling + Integer

+ 3× 3
8 36 3 8 4 6 5 10 20 60 89.45% 90.18%

Table 5.4: SIFT: Resource Usage Summary on FPGA of all Optimisations Down-sampling, 3× 3Kernel & Integer Arithmetic Configuration.

Configuration LUTs Registers BRAM DSP
Power Usage

(Watts)
Dynamic/Static

(2,4) 42.11% 14.32% 21.38% 5.36% 10.324/0.97
(4,5) 43.94% 15.38% 23.30% 6.51% 17.343/0.99

128

Table 5.5: SIFT: Profiling Summary on each Hardware Platform. Baseline &Optimised (Octave, Scale).

Operation (ms) CPU
(4,5)

GPU
(4,5)

Optimised
FPGA
(4,5)

Baseline
FPGA
(4,5)

Optimised
FPGA
(2,4)

Baseline
FPGA
(2,4)

Optimised
FPGA
(2,4)

(600Mhz)
Gaussian Pyramid 1118 3 36 45 8 19 4
Extrema Detection 133 2 8 18 3 10 3
Orientation \&

Magnitude Assignment 128 1 4 16 4 9 2
Descriptor Generation 50 1 10 14 5 5 1

Total Execution Time (ms) 1429 7 60 93 20 43 10
Energy Consumption (nJ/Op) 1620 12.47 4.09 7.34 2.41 5.82 4.61

Table 5.6: Image Processing Filters Summary & Accuracy (RSME) Result Sum-mary.
Optimised Algorithm Runtimes (ms)Baseline

Runtime (ms) Datatype
(INT)

Kernel
(3x3) Downsampling Separable

FilterAlgorithm CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA
Box Filter(50x50) 14 2.9 3.2 12 2.6 2.9 8 2.1 2.3 10 2.4 2.5 6 1.5 1.8
GaussianFilter (31x31) 12 2.3 2.5 10 1.9 2.1 6 1.5 1.6 8 1.8 1.9 4 1.1 1.3
SobelFilter (7x7) 30 3.4 3.2 27 3.1 2.9 23 2.7 2.4 25 2.9 2.7 15 1.8 1.6

Accuracy (RSME)
Box Filter(50x50) 8.11 9.14 10.92 8.78 9.21 9.44 3.37 4.54 5.94 130.21 135.13 145.15 9.34 10.23 10.62
GaussianFilter (31x31) 6.68 8.45 10.26 6.69 7.59 7.64 4.01 5.27 6.89 145.4 149.42 164.22 7.83 8.16 8.53
SobelFilter (7x7) 10.25 11.43 12.45 10.28 11.42 11.88 10.16 11.35 12.14 130.41 132.78 148.21 11.32 12.42 12.64

Table 5.7: CNN Optimisation Result Summary: Runtimes and Image Classifi-cation Accuracy for Baseline and Optimisations Applied on each Hardware.
OptimisationsBaseline

Runtime (s) Datatype (INT8) DownsamplingAlgorithm

CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA
MobileNetV2 0.25 0.18 0.19 0.21 0.16 0.15 0.23 0.17 0.18
ResNet50 0.33 0.22 0.25 0.25 0.18 0.16 0.28 0.20 0.19

Energy Consumption (Joules)
MobileNetV2 22.5 7.20 6.50 16.8 6.30 5.25 19.55 6.40 6.1
ResNet50 29.7 9.4 8.75 21.25 8.1 5.6 23.8 8.4 6.65

129

6 Image Processing Algorithms on
Heterogeneous Platforms

Feature extraction algorithms and Convolutional Neural Networks (CNN) are
widely used in various problem domains, such as object detection, image
classification, and segmentation. Feature Extraction are typically designed to
identify and extract relevant patterns or features from the input data. These
algorithms are typically designed and implemented on DSPs or GPUs, which
offer a specialised architecture properties which include thousands of general
compute cores and coupled with a large amount of high-bandwidth memory.

In the case of CNNs that contain millions of parameters, which in turn
require significant memory resources to store their weights, implementing
them on low-resource and energy constrained platforms is limited. Heteroge-
neous platforms solves these constraints by utilising various specialised pro-
cessors, such as CPUs, GPUs, TPUs, and FPGAs, to process specific operations.
Leveraging the advantages of true heterogeneous architectures, run-time and
power efficient designs can be realised by exploiting architectures with suffi-
cient resource and processing capacity.

However, partitioning algorithms remain an arduous task, particularly wh-
en distributing operations among various accelerators within heterogeneous
architectures. This process necessitates a delicate balance, taking into ac-
count critical factors such as computational power, memory bandwidth, and
communication overhead. Furthermore scheduling tasks presents its own set
of challenges. Scheduling involves determining the order in which tasks are
executed on different processing units, considering factors such as task de-
pendencies, resource availability, and load balancing. Therefore, a scheduler
is required for managing hardware resources efficiently, controlling concur-

130

rency, balancing workloads, prioritising tasks while adapting to dynamic con-
ditions. Thus, the scheduler plays a critical role in orchestrating task execution
to minimise data transfers and optimise overall system performance

The important contributions of this chapter is the development of a het-
erogeneous hardware and adaption of algorithms on that hardware. Starting
with an extensive analysis of popular feature extraction algorithms such as
SIFT and two CNN architectures, namely ResNet18 [175] andMobilnetV2 [176].
The feasibility of implementing these algorithms and networks onto hetero-
geneous systems is investigated by identifying the optimal stage in each net-
work/algorithm to be mapped onto a specific accelerator. A comprehensive
benchmarking analysis of the CNNs and SIFT is conducted by performing im-
age classification and feature extraction on a wide range of platforms to dis-
cern the layers or stages that exhibit the highest energy consumption, infer-
ence, and total runtime. Two new heterogeneous platforms are constructed,
one comprising high-performance accelerators and the other an embedded
system with power-optimised processors. The algorithms and networks are
implemented on both platforms using a fine-grained partitioning strategy and
evaluated. Heterogeneous results are compared to the homogeneous accel-
erator counterparts to determine the best-performing architecture.

The main contributions of this chapter are as follows:
• Efficient deployment of CNNs and SIFT, which are computationally faster
and consume less energy, is proposed.

• Partitioningmethods on heterogeneous architectures are introduced by
studying the features of CNNs and stages of SIFT to identify characteris-
tics used to determine a suitable accelerator.

• Two heterogeneous platforms consisting of two configurations, high-
performance and a power-optimised embedded system, are developed.

• Development of a heterogeneous scheduler to allocate tasks onto the
suitable accelerator.

• Benchmarking and evaluating runtime, energy, and inference metrics of
popular convolution neural networks and SIFT on a wide range of pro-
cessing architectures and heterogeneous systems.

131

Figure 6.1: Development flow of Implementing CNNs on HeterogeneousHardware

6.1 Heterogeneous Architecture

In order to implement CNNs efficiently on heterogeneous platforms, A de-
velopment flow is proposed, shown in Fig. 6.1. The framework identifies the
properties of networks and further profiles in accordancewith their hardware
suitability. Finally, optimise and evaluate the partitioning decisions.

6.1.1 CNN Development Flow:

Network Feature Extraction & Layer Profiling Analysis

Analysing the network architecture is essential in understanding the role of
each layer and how they contribute to the overall performance of the model.
This is accomplished by running the CNN on various hardware architectures
and profiling the execution time and energy consumption of each layer. Once
the resource-intensive layers have been identified by profiling, they can be
deconstructed into the types of operations they perform. This deconstruction
allows for amore granular understanding of the computational requirements.

Partitioning & Optimisation

To efficiently map operations onto hardware, understanding the instruction
sets and memory models of different accelerators is necessary. For exam-
ple, GPUs excel at performing matrix multiplication during high occupancy,
while FPGAs are more power and runtime efficient for smaller matrix sizes.
CPUs, with their high clock frequency and memory hierarchy, can be advan-
tageous for sequential layers. Optimisations such as quantisation, pruning,
and compression can improve performance, but the trade-offs must be care-
fully considered.

132

Performance Evaluation

To determine performance, partitioning strategies and hardware choices are
benchmarked using various metrics, such as energy consumption, accuracy,
inference, and throughput. Evaluating algorithms not only serves as a com-
parison to other architecture but also identifies areas for improvement.

The following sections, presents an overview of the representative feature
extraction and CNN algorithms targeted for partitioning and implementation
on heterogeneous platforms.

6.2 Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform (SIFT) algorithm used to detect and de-
scribe local features in images. The SIFT algorithm is designed to be robust
to changes in scale, rotation, and partial occlusion. It works in several stages:
First, it identifies key points in the image through scale-space extrema de-
tection. These keypoints are then localised more accurately and assigned an
orientation. Finally, a descriptor is computed for each keypoint, capturing its
local image gradient patterns. These descriptors are used for matching key-
points across different images, making SIFT useful for tasks like object recog-
nition, image stitching, and 3D reconstruction. The in-depth algorithm and its
operations are explored in the previous chapter, section 5.2.

6.2.1 SIFT Algorithm Analysis

There are several key stages in the SIFT algorithm that vary in computational
complexities and hardware implications. This section discusses the complex-
ity, memory footprint and impact of operations on CPU/GPU/FPGA hardware.
The full algorithmic description of SIFT is described in Section 5.2.

Gaussian Pyramid Construction:

The Gaussian stage of the SIFT algorithm poses a considerable computational
load on hardware, not only due to the intensive convolution operations but

133

also because of the memory requirements involved. The process of gener-
ating multiple intermediate images, each corresponding to a different scale,
can lead to significant memory consumption, particularly for high-resolution
images. For a square image with dimensions of N x N, the complexity of the
convolution operation grows quadratically with N, resulting in a substantial
computational load. This process is repeated for each of the K scales, further
adding to the overall computational demand. Moreover, the hardware would
require high memory bandwidth for accessing large filter kernels and image
matrices. In addition to the computational complexity, the memory footprint
of storing multiple Gaussian-filtered images can become a bottleneck, espe-
cially when dealing with large images or a high number of scales. Architec-
tures with higher parallelisation and memory caches are more suitable for
this stage.

Extrema Detection:

The computation required to determine these extrema involves a pixel-by-
pixel comparison, evaluating whether each pixel qualifies as an extremum.
While this comparison is conducted for every pixel in the image. These are
O(1) operations for each pixel, and given the nature of the operation, lower
compute resources are required. The extrema detection algorithm operates
independently on each scale level of the pyramid, comparing pixels within a
local neighbourhood to identify potential keypoints. Therefore, this stage can
be implemented in parallel which maps well to GPUs and FPGAs.

Orientation and Magnitude Assignment

While square root and arc tangent operations are less computationally in-
tensive compared to convolutions, they still pose a significant computational
burden, especially when performed on a large number of pixels. Hardware
support for fixed-point or floating-point arithmetic can significantly acceler-
ate these calculations, as these specialised units are optimised for handling
complex mathematical operations.

134

Descriptor Generation:

In the histogram binning and normalization stage of SIFT, local image gradi-
ents are quantised into orientation histograms and then normalised to en-
hance the robustness of feature descriptors. Binning involves multiplication
and addition operations while normalisation involves division which requires
more resource logic on hardware. However, the operation intensity is rela-
tively lower than the previous stages which makes it suitable for all architec-
tures.

Experimental Design

The selected profiling times for each stage andon eachhardware are shown in
Fig. 6.2. The runtime profiles of each SIFT stage were collected using a robust
experimental methodology. The input is a greyscale 3840 × 2160 resolution
image. The CPU and GPU implementations leveraged the OpenCV SIFT func-
tion, while the FPGA was developed using Verilog. The CPU and GPU code is
executed 1000 times, and its runtimes are averaged. In the FPGA implementa-
tion, the resulting timing graphs from the simulations are used to determine
the time taken for each stage. All architectures had 16-bit float precision for
their respective designs and algorithms.

6.2.2 SIFT Profiling & Partitioning Strategy

The results reveal that the CPU is substantially slower in execution time than
GPU and FPGA by 2× on average. Even though the CPU has the highest clock
speed, the lack of many processing cores results in poor for-loop unrolling
optimisations for parallelisation. Comparing only GPU and FPGA, the overall
Total runtime has shown the GPU being 0.83× faster. In the Gaussian Pyramid
and Orientation & Magnitude stage, the GPU outperforms the FPGA by 2×. On
the other hand, the FPGA outperforms the GPU in the Extrema Detect stage
by 1.5×. The GPU and FPGA architectures are comparable in performance
when generating keypoint descriptors due to a lower amount of operations.
Overall, the lower GPU runtime in most stages is attributed to having a sig-
nificantly higher clock speed (e.g., 1725MHz vs 300MHz) and more processing
cores than the FPGA to maximise throughput.

135

Total GaussianPyra-mid
ExtremaDetect Orientation& Mag-nitude

DescriptorGener-ation

0

100

200

300

400

500

600

700

800

900 89
6

68
4

11
2

97

2110 3 2 4 112 6 3 2 1

Exe
cut

ion
Tim

e(m
s)

CPU: 5900XGPU: 3070FPGA: ZCU106

Figure 6.2: Operation Stage Run-time Profiling: SIFT.
The partitioning strategy shown in Fig. 6.3, focuses on striking a balance

between potential energy consumption and the execution time of the het-
erogeneous platform.

The RGB to greyscale conversion is a computationally lightweight image
processing operation. It involves a linear combination of the red, green, and
blue colour channels with specific weightings to produce a greyscale image.
The decision to execute rgb2gray algorithm on the CPU instead of the GPU or
FPGA is due to minimising the overhead associated with transferring the im-
age data. Although GPUs and FPGAs can perform the RGB to Gray conversion
slightly faster due to their throughput processing and pipelining capabilities,
the time spent moving the data to and from these platforms can negate the
benefits, especially for smaller image sizes where the conversion isn’t the bot-

136

Figure 6.3: SIFT Algorithm & Partitioning Strategy.
tleneck.

The "Gaussian Pyramid" executed on GPU is faster than the CPU and FPGA
since the vast number of cores and memory resources available can utilise
majority of the matrix multiplication operations. To create these scale-space
representations, the algorithm needs to access the image data repeatedly for
each scale level. The Gaussian filters, used to perform blurring, have larger
kernels (in terms of memory requirements) as the scale level increases. Ad-
ditionally, the image data must be read from memory for each scale level,
leading to significant memory access. This heavymemory access is due to the
repetitive application of convolution operations with Gaussian filters at multi-
ple scales. Thememory bandwidth and efficiency become critical in this stage,
especially when working with large images or implementing the algorithm on
hardware platforms. Therefore, GPUs can provide an advantage in scenar-
ios where larger memory bandwidth is needed over FPGAs. The "Extrema
Detection" is allocated to GPU to reduce additional data transfer costs that
would offset any performance gain. The "Orientation & Magnitude" opera-
tions are better suited to the FPGA due to the customised pipelining offered,
which allows a higher number of gradient calculation operations per clock
cycle. In the final operation stage, "Descriptor Generation", the FPGA offers
comparable performance to the GPU while consuming less energy per oper-
ation and reducing additional data transfers.

6.3 Convolutional Neural Network

This section describes the architecture of twowidely used CNNs, Resnet18 and
MobilenetV2. Each CNN is profiled layer by layer and a partitioning strategy is
developed to execute on the heterogeneous platform. The layer characteris-

137

tics and profiling results support the partitioning methods.

6.3.1 Convolution Neural Network Architecture:

Figure 6.4: ResNet-18 Architecture & Partitioning Strategy.
ResNet-18: is a deep convolutional neural network architecture observed

in 6.4, that employs several key techniques to achieve state-of-the-art perfor-
mance in various computer vision tasks. Its design is driven by the need to
train very deep neural networks while mitigating issues like vanishing gradi-
ents. The key components and technical details of ResNet-18 are as follows:
1. Convolutional Layers: ResNet-18 comprises a total of 18 layers, which

are organised into several stages. The first layer is a 7× 7 convolutional
layer with a stride of 2. This layer is followed by amax-pooling operation
with a 3 × 3 window and a stride of 2. The large kernel size in the initial
layer helps capture larger spatial features.

2. Batch Normalisation and ReLU Activation: After each convolutional
layer, batch normalisation is applied to stabilise and accelerate train-

138

ing. This is followed by the Rectified Linear Unit (ReLU) activation func-
tion, which introduces non-linearity into the network. The combination
of batch normalisation and ReLU helps in faster convergence and regu-
larisation.

3. Residual Connections: One of the distinctive features of ResNet-18 is
its use of residual connections. These connections introduce identity
mappings, which allow the network to learn the residual information be-
tween layers. Mathematically, the output of a residual block is calculated
as follows:

F (x) = H(x) + x (6.1)
Where x is the input to the block, H(x) represents the transformation
applied by the block, and F (x) is the output.

4. DownsamplingBlocks: Each stage in ResNet-18 containsmultiple resid-
ual blocks. After a series of convolutional layers within a stage, a down-
sampling block is applied. The downsampling block typically involves
a convolutional layer with a stride of 2, which reduces the spatial size
of the feature maps while increasing the number of channels. This op-
eration effectively reduces the computational burden while preserving
important information.

5. Softmax Classification Layer: The final layer of ResNet-18 is a softmax
classification layer. It takes the feature map produced by the preceding
layers and computes a probability distribution over output classes. The
softmax function is applied to the features, and the resulting probabili-
ties indicate the likelihood of the input belonging to different classes.

6. Shortcut Connections: To prevent vanishing gradients and facilitate
the flow of information, shortcut connections are introduced in residual
blocks. These connections skip the first two convolutions within a block
and add the input directly to the output of the third convolutional layer.
This way, the gradient can flow backwards through the skip connection,
making it easier to train very deep networks.

MobileNetV2: shown in 6.5, is an embedded-optimised convolutional neural
network architecture that uses a range of techniques to achieve high accuracy
with low computational cost. Key details of MobileNetV2 include:
1. Depthwise Separable Convolution:MobileNetV2 employs a depthwise

separable convolution technique. It divides a standard convolution op-

139

Figure 6.5: MobileNetV2 Architecture & Partitioning Strategy.
eration into two distinct steps: depthwise convolution and pointwise
convolution. Depthwise convolution first performs a separate convo-
lution for each input channel using a kernel of size (k, k), where k is the
filter size. This reduces the computational load by a significant margin.
The depthwise convolution operation is computed using Eq. (6.2):

y = depthwise_conv(x, Wd) (6.2)
where y is the output, x is the input feature map, and Wd are the depth-wise convolution weights.

2. PointwiseConvolution: After the depthwise convolution, pointwise con-
volution is applied using 1× 1 kernels. Pointwise convolution combines
the results of the depthwise convolution by performing a linear combi-
nation of the channels. This step helps to capture complex relationships
between channels and is critical for maintaining model accuracy.
The pointwise convolution operation shown in Eq. (6.3):

140

y = pointwise_conv(x, Wp) (6.3)
where y is the output, x is the result of the depthwise convolution, and
Wp are the pointwise convolution weights.

3. Reduction of Computational Cost and Parameters: The combination
of depthwise separable convolution reduces the computational cost sig-
nificantly, making MobileNetV2 suitable for resource-constrained em-
bedded devices. The reduction in the number of parameters and the
computational requirements is a crucial advantage.

4. Linear Bottlenecks: MobileNetV2 also introduces linear bottlenecks,
which are inexpensive 1 × 1 convolutions placed between a ReLU acti-
vation function and a 3 × 3 convolution. These linear bottlenecks are
designed to keep the computational cost low while ensuring that the
network maintains a high level of accuracy. The ReLU activation helps
introduce non-linearity, while the subsequent 3×3 convolution captures
more complex features.
The linear bottleneck operation represented in Eq. (6.4):

y = conv_3x3(ReLU(conv_1x1(x, Wl)), W3x3) (6.4)
where y is the output, x is the input,Wl are the linear bottleneck weights,and W3x3 are the weights for the 3× 3 convolution.

6.3.2 CNN Profiling & Partitioning Strategy:

In this section, both CNN architectures are analysed and partitioned onto the
appropriate accelerator based on their runtime profiles. The CNN hardware
comparison results are displayed in Figure Fig. 6.6 & Fig. 6.7.

Experimental Design

The runtime profiles of each CNN architecture layer were collected using a
robust experimental design. Both MobileNetV2 and ResNet18 architectures
used a 3840 × 2160 resolution image dataset. The CPU and GPU implemen-
tations leveraged the Pytorch library and its CUDA configuration. A custom

141

Total Conv1 L1 L2 L3 L4 FC0

0.05

0.1

0.15

0.2

0.25

0.3 0.
29

0.
02

3

0.
02

1

0.
01

1

0.
00

9

0.
00

15

0.
00

01

0.
18

0.
00

25

0.
00

24

0.
00

19

0.
00

19

0.
00

09

0.
00

09

0.
19

0.
00

34

0.
00

34

0.
00

21

0.
00

19

0.
00

09

0.
00

09

Exe
cut

ion
Tim

e(s
)

CPU: 5900XGPU: 3070FPGA: ZCU102

Figure 6.6: ResNet18, Layer Run-time Profiling: First Convolution (Conv1)Layer (L), Fully Connected (FC). Total represents the complete CNN runningincluding initialisation time.
hook function was defined to measure the runtime of each convolutional and
linear layer during forward pass execution. For every convolutional and lin-
ear layer in the model, the hook function recorded the start and end times,
allowing calculation of the layer-wise runtime. Through 1000 code execution
iterations, the runtimes collected are averaged. In the FPGA implementation,
Xilinx deep learning processing unit IP and their resulting timing graphs are
used to determine the time taken by each layer. All architectures had 8-bit
precision for both models and implementation.

Resnet18:

The Resnet18 results in Fig. 6.6 show the fastest hardware for executing the
model is the GPU, with the total execution time of 0.18s, while the slowest is

142

the CPU with 0.29s. The FPGA’s total execution time is between the two with
0.19s.

The conv1 layer is computationally intensive for all platforms as it applies
64 filters of size 7 × 7 to a large input image with multiple colour channels.
This results in a large number of multiply-accumulate (MAC) operations. The
conv1 layer also performs padding and activation functions, which adds to
the overall computational cost. However, the execution time for Conv1 is sig-
nificantly faster on the GPU, which can parallelise the computations across
multiple cores. In layers L1 ∼ L2, the GPU is 1.36× and 1.10× faster than the
FPGA. Therefore, the GPU is the best candidate to allocate Conv1, L1 and L2
for execution.

The L3 ∼ L4 and Fully Connected (FC) layers take relatively less time to ex-
ecute. The size of featuremaps decreases as they progress through the layers
due to downsampling operations like pooling and strides. The L3 ∼ L4 con-
volutional and average pool layers can be executed on the FPGA since fewer
MAC operations are occurring for the GPU to be fully utilised while taking ad-
vantage of power efficient architecture.

MobilenetV2:

The Fig. 6.7 results show that the total execution time for the CNN on the CPU
was 0.241s, while on the GPU and the FPGA, it was 0.23s and 0.20s, respectively.
The bottleneck layer with the longest execution time for all three devices was
BN1, with a time of 0.02202ms on the CPU, 0.015ms on the 3070 GPU, and
0.0034ms on the FPGA.

The runtime for eachbottleneck layer decreases as itmoves from Bottleneck
1 to Bottleneck 7 due to reduced input channels and the amount of compu-
tation required to process the data in each layer. Thus, the later bottleneck
layers take less time to execute than the earlier ones. The first five bottleneck
layers are suitable for execution on the FPGA, as it shows that it performs∼ 4×
faster than the GPU on average. The reason behind the faster execution on
FPGA can attributed to multiple factors below:
1. Direct, customandoptimised routing between logic allows efficient data-

flow transfer and locality.
2. Separable filters and featuremapshave reducedmemory footprintwhich

143

Total BN1 BN2 BN3 BN4 BN5 BN6 BN70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.
24

1

0.
02

20
2

0.
01

50
2

0.
01

10
2

0.
00

90
2

0.
00

80
2

0.
00

60
2

0.
00

20
1

0.
23

0.
01

5

0.
01

0.
00

7

0.
00

7

0.
00

09

0.
00

08

0.
00

08

0.
2

0.
00

34

0.
00

34

0.
00

21

0.
00

19

0.
00

1

0.
00

1

0.
00

1

Exe
cut

ion
Tim

e(s
)

CPU: 5900XGPU: 3070FPGA: ZCU102

Figure 6.7: MobileNetV2 Layer Run-time Profiling: Bottleneck Layer (BN). Totalrepresents the complete CNN running including initialisation time.
can be efficiently managed.

3. Efficient use of pipelining for convolutional operations and reduced data
dependency (e.g., ResNet18 residual connections).

The remaining Bottleneck 5 ∼ 7 layers are suitable for execution on the
GPUbecause of a slight performance advantage and shorter initialisation trans-
fer time back to the host. The Softmax and fully connected layers are also
computed on the GPU since the performance is comparable to the FPGA and
reduces data transfer overhead. Both layers are required to transform fea-
tures into a suitable format, and it assigns a probability score for classification.

144

Table 6.1: Hardware/Software Environment
Accelerator High-Power Low-Power Software

CPU AMD 5900x
(4.8 GHz)

ARMv8.2
(1400MHz) Python / Pytorch 2.0

GPU Nvidia 3070
(1730 MHz)

Xavier NX
(1100MHz) Python / Pytorch 2.0

FPGA ZCU106
(300Mhz)

Artix-7
(100MHz) Verilog / Vivado / Vitis

6.4 Experimental Setup

This section introduces both heterogeneous implementations and their corre-
sponding tools and software used to target those architectures. In addition,
a detailed break of the scheduler used to move data between all accelera-
tors while keeping tasks synchronised. Both power and execution time are
discussed in detail which are used to evaluate both platforms.The proposed
partitioning is tested using two developed heterogeneous platforms contain-
ing high-low power components, as shown in Table 6.1, and described below:

Low-Power System: The constructed system consists of a custom carrier
board which is equipped with several key components, including an Artix-7
(XC7A200T) FPGA, a Jetson Xavier NX, and an ARM CPU. To provide additional
storage space, the Linux image is flashed onto the SD card rather than the
16Gb eMMC. Communication between the FPGA and the Xavier NX is achieved
through a PCIe gen2 4-lane interface, which is connected via an M.2 key-M
connector.

High-Power System: The system consists of CPU (AMD 5900x), GPU (GTX
3070) and FPGA (Xilinx ZCU106), integrated into a desktopwith 32GB 3200Mhz
DDR4 Memory. Both devices are interfaced via PCIe Gen3 and the communi-
cation to the host CPU uses direct memory access (DMA), allowing the move-
ment of data between host memory and subsystems. The GPU and FPGA
drivers are used to program the DMA engine and DMA/bridge subsystem IP.
Idle CPU is frequency scaled to reduce power consumption.

145

(a) (b)
Figure 6.8: (a) Heterogeneous High-Power System, (b) Low-Power EmbeddedSystem

Dataset. The test images used in the experiments are fromLIU4K-v2 dataset
[171], which is a high resolution data-set that includes 2000 3840×2160 images.
The images contain a variety of backgrounds and objects.

Heterogeneous Scheduler Architecture

A heterogeneous scheduler architecture in Fig. 6.9 is developed, which is re-
sponsible for distributing and managing tasks or workloads across different
types of processing units or resources. The scheduler is written in C/C++ to
manage memory transfers and pass the feature map and operation stage
data from the CPU and into the GPU or FPGA.

146

Figure 6.9: Scheduler Architecture for Heterogeneous Platform: Allocatingtasks to processors depending on the partitioning strategy.
The scheduler uses a First-Come, First-Served (FCFS) algorithm due to its

relatively simple construction and minimal runtime overhead. The operation
stages in imaging algorithms are executed sequentially. Therefore, tasks are
partitioned in order based on their dependency on previous task data, which
makes it suitable for this type of scheduling algorithm. The pre-partitioned
ordered tasks are fetched from the queue and decoded to prepare for ex-
ecution. As tasks are dequeued, they are placed in the task ready queue, a
staging area where tasks await execution. The task ready queue ensures that
tasks are readily available for the execution stage. Each task contains a pre-
defined pragma which tells the scheduler which architecture to execute the
operation on. Additionally, a task status register is used to keep track of the
current state and progress of each task. This register provides real-time infor-
mation about the task’s status, whether it is waiting, executing, or completed.
The task status register is essential for maintaining task synchronisation and
ensuring that tasks progress through the execution pipeline smoothly. It al-
lows the scheduler to monitor and manage the execution of tasks and make
informed decisions based on the tasks’ statuses, ensuring optimal resource
utilisation and order of execution.

The pseudocode presented in Algorithm 1 outlines the process of the Het-

147

Algorithm 1 Heterogeneous Scheduler
1: fpga_output← None
2: gpu_output← None
3: task_queue← ∅ ▷ FCFS task queue
4: for i← 1 to Length(tasks) do
5: task ← tasks[i]
6: task_queue← task_queue ∪ {task} ▷ Add task to FCFS queue
7: end for
8: while task_queue is not empty do
9: task ← Dequeue(task_queue) ▷ Dequeue the first task
10: if ExecuteOnFPGA(task, fpga_partition) then
11: fpga_output← ExecuteOnFPGA(task)
12: else if ExecuteOnGPU(task, gpu_partition) then
13: gpu_output← ExecuteOnGPU(task)
14: end if
15: end while
16: if fpga_output is not None then
17: final_output← TransferData(fpga_output, ”FPGA”, ”CPU”)
18: else
19: final_output← TransferData(gpu_output, ”GPU”, ”CPU”)
20: end if
21: final_output← PostProcess(final_output)
22: DisplayResult(final_output)

erogeneous Scheduler. This algorithm iterates over the tasks in the workload
and employs an FCFS queue to execute tasks in the order they were received.
The algorithm initialises two functions, ExecuteOnFPGA() and ExecuteOnGPU(),
which are used to execute the task on a certain device based on a partition-
ing strategy. The FCFS queue ensures that tasks are executed in the order
of arrival, maintaining fairness and accuracy in task execution. Once all tasks
have been executed, the algorithm transfers the output data from the FPGA
or GPU to the CPU, depending on which device the output is stored on. This
transfer facilitates the consolidation of results for further processing. Lastly,
the algorithm post-processes the output to generate the final result of the
workload.

6.4.1 CPU-GPU-FPGA Data Communication

The data transfer process controlled by the scheduler follows a series of steps
described below:

148

Figure 6.10: RDMA Direct Memory Access Data-transfer process steps forcommunication between FPGA-GPU.
1. Allocate Buffer: Allocate memory buffers on both the GPU and FPGA to

hold the data to be transferred.
2. Register Buffer: Register the GPU buffer with the FPGA using PCIe Base

Address Register mapping or GPUDirect Remote Direct Memory Access
to enable direct access.

3. Pin Buffer: Pin the GPU buffer to prevent it from being swapped out
of physical memory, ensuring consistent and efficient access by the FP-
GA/Host.

4. Request Copy: Initiate the data transfer from the GPU buffer to the FPGA
buffer using a Direct Memory Access controller.

5. Program DMA Copy: Configure the DMA engine’s source and destina-
tion addresses, transfer size, and control parameters to transfer data
autonomously.

149

6. Handle DMA Completion: Monitor the DMA engine’s status flags or in-
terrupts to detect transfer completion.

7. Process Data on FPGA/GPU: Access the transferred data from the desti-
nation buffer.

In the case of FPGA, the scheduler uses the drivers to initialise the DMA
to allocate buffer pointers and then pass the pointer to the write function.
After receiving the input data and its size, the driver creates a descriptor and
initialises the DMA process by providing the descriptor’s start address. The
driver writes a control register to start the DMA transfer, which reads the de-
scriptor and fetches the feature map data to be processed on the FPGA.

On the GPU side, the CPU host code allocates device pointers using CUDA
functions like cudaMalloc to specify the locations in the GPU’s memory where
the data will be placed. Then, the CPU host code invokes CUDA API functions
such as cudaMemcpy to request the data transfer. The GPU driver, which man-
ages GPU resources, sets up the transfer, allocates GPU memory, and con-
figures the data transfer channels. It ensures that the FPGA’s memory is cor-
rectly mapped to the GPU’s address space to enable efficient transfer. Subse-
quently, theGPUdriver issues commands to theGPU to initiate the data trans-
fer. The actual transfer is executed by theGPUhardware usingDirectMemory
Access (DMA). Once completed, the GPU returns a status to the driver. The
CPU host code can then access and process the data in the GPU’s memory.
Synchronisation mechanisms, like CUDA events or cudaStreamSynchronize,
may be employed to ensure that the GPU doesn’t process the data prema-
turely.

The systems exploit GPUDirect RDMA shown in Fig. 6.10 to facilitate low-
latency communication without involving the host CPU by retrieving the bus
address of buffers in GPU memory. Traditionally, BAR windows are mapped
to the CPU’s address space using memory-mapped I/O (MMIO) addresses.
However, current operating systems lack mechanisms for sharing MMIO re-
gions between drivers. Therefore, the NVIDIA kernel driver provides functions
to handle address translations and mappings. This means that data can be
moved directly between the GPU and the host without the need for interme-
diate buffers or copies in CPU memory. This approach significantly improves
data transfer efficiency, particularly for large images or data, as it eliminates
unnecessary data movement and reduces memory overhead.

150

6.4.2 Execution time

The evaluation of the overall system performance considers both latency and
compute factors, reporting performancemetrics for total time, inference, and
other significant layers while using floating point 16 precision. Other devices,
such as i9-11900KF (5.30GHz), are also benchmarked for additional insight.
The run-time is measured using the host platform’s built-in time libraries. The
network performance is estimated by executing and averaging the results of
100 images. The frame per second (FPS) metric is computed using Eq. 6.5:

FPS = 1/Execution Time. (6.5)

6.4.3 Power Consumption

(a) (b)
Figure 6.11: (a) Power Measurement using Current Clamp, (b) Connected to aData Logger at 4 Kilo Samples Per Second.

Two common methods used for measuring power are software and hard-
ware based. Accurate power estimation is always challenging for software
tools because they have to assume various factors in their models. Addition-
ally, Taking the instantaneous power or TDP of a device is not accurate since
power consumption varies on the specific workload. Therefore, measuring
power over the time it takes for the algorithm to execute improves accuracy as
opposed to using just fixed Wattage. The hardware measurement approach
uses a current clamp meter shown in 6.11, which outputs a voltage for ev-

151

ery Amp measured. The Otii Arc Pro [177] data-logger captures the time se-
ries data from the current clamp and generates a graph showing the current
consumption over time. A script is developed to start and stop the measure-
ments during the algorithm’s execution. The mean current is averaged and
multiplied by the input voltage to determine the energy consumed in Joules
(J).

The energy consumption is obtained using Eq. (6.6) where E is energy, P
represents power and t time.

E = P × t (6.6)

6.5 Experimental Results

In this section, results of both CNN and SIFT algorithms implemented on a
heterogeneous platform are observed and discussed in-depth.

6.5.1 Heterogeneous SIFT Results

In achieving that, a custom pipeline was created by targeting various algo-
rithm components on different hardware based on their suitability obtained
from the benchmarking framework. This includes the latency of transferring
image data betweenmemory and the accelerators. The heterogeneous archi-
tecture empowers the ability to pick and execute operations within the image
processing algorithms on each architecture tomeet the speed and power tar-
get. However, within the scope of this work, only an initial configuration of the
SIFT algorithm is reported, which establishes preliminary steps toward future
work on finding the most optimal configuration for the algorithms.

Heterogeneous SIFT Runtime & Energy Consumption

Table 6.2 shows the execution time of the SIFT algorithm on a heterogeneous
platform. The table includes memory transfer latency between the host and
devices, an aspect frequently overlooked in similar analyses. The results re-
veal that the heterogeneous platform (Excl. Memory Transfer) outperforms

152

Table 6.2: Execution Time (Excl. Memory Latency) on Individual Hardwareand Heterogeneous Platform (CPU: 5900X, GPU: RTX-3070, FPGA: ZCU102).Baseline excludes memory latency. Incl. Memory Latency as additional data.
Baseline (ms) Heterogeneous Architecture (ms)Algorithm

CPU GPU FPGA Accelerator Excl. Memory Latency Inc. Memory Latency
RGB2Gray 0.80 0.54 0.40 CPU 0.64 0.78
Gaussian
Pyramid 684 3 6 GPU 3 115
Extrema
Detection 112 2 3 GPU 2 101

Orientation \\&
Magnitude 97 4 2 FPGA 2 2
Descriptor
Generation 21 1 1 FPGA 1 1

Total Runtime 896.8 10.54 12.4 CPU+GPU+FPGA 8.64 219.78

all discrete architectures, CPU, GPU and FPGA by 103×, 1.21× and 1.43×, re-
spectively. However, taking data transfer into account, the heterogeneous
architecture increases in execution time due to host task scheduling. On the
other hand, As accelerators are fabricated on the same silicon die, memory
latency would significantly be reduced.

The energy consumption results in Fig. 6.12 reveal that the CPU consumes
the most energy for all operation stages in SIFT and RGB2Gray while the FPGA
used the least. The Gaussian Pyramid stage stands out as the most energy
intensive due to the substantial number of operations it requires. In con-
trast, the low resource requirements of RGB2Gray and Descriptor Generation
stages reflected lower energy usage.

The heterogeneous architecture, which combines CPU, GPU and FPGA re-
sources, strikes a balance between power consumption and execution time.
The "Total" power consumption is notably lower than the CPU but between
both GPU and FPGA since the static power of other accelerators is taken into
account.

6.6 Heterogeneous CNN Results

The results in Fig. 6.14 & Fig. 6.15 show the total run-time and energy con-
sumption of Resnet18 and MobilenetV2 on each architecture and heteroge-

153

Total RGB2Gray GaussianPyra-mid
ExtremaDetect Orientation& Mag-nitude

DescriptorGener-ation

101

102

103

104

105 11
.3

4.
28

11
.0

8

9.
04

8.
96

7.
36

6.
29

2.
94

5.
48

4.
38

5.
19

3.
76

6

2.
27

5.
26

4.
01

3.
58

3.
37

6.
09

3.
94

5.
39

4.
28

3.
97

3.
47

Pow
erC

ons
um

ptio
n(J

oul
es)

CPU: 5900X GPU: 3070FPGA: ZCU106 Heterogeneous

Figure 6.12: SIFT Power Consumption, Baseline Homogeneous and Heteroge-neous Implementation Comparison.
neous platform while Fig. 6.13 shows the inference in Frames per Second. The
tables 6.4 & 6.3, summarises the results for the Total Execution Time, Inference,
Convolution, Fully Connected, Total Energy, CPU Energy, Device Energy & Datalog-
ger

6.6.1 Inference

According to Fig. 6.13, Resnet18 CNN had the highest FPS value at 270 in con-
trast to MobileNetV2 243 FPS on high and low power heterogeneous architec-
ture. This difference in FPS can be attributed to the network depths and pa-
rameters, with ResNet-18 having 18 layers and MobileNetV2 having 53 layers,
leading to differences in computational complexity. Considering individual

154

i9-99
00K

5900
x(+) 3070

(+)

Xavie
r NX

(-)
Artix

-7(-)
ZCU

106(
+) HP(+

) LP(-)
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

47 45

25
0

78

14
.2

23
8

27
0

83

43 40

20
8

56

10
.2

21
7

24
3

68

Fra
me

spe
rSe

con
d(F

PS)
Resnet-18Mobilenet-V2

Figure 6.13: Frames per Second (FPS) for Inference on CPU:(I9-9900K, 5900X)GPU:(GTX 3070, Xavier NX) FPGA:(Artix-7, ZCU106), High-Power (HP), Low-Power (LP). (+) Denotes components in HP Platform, (-) Denotes Componentsin LP Platform.
hardware only, the ’3070’ GPU achieved the highest FPS on Resenet18 and the
’ZCU106’ FPGA for MobileNetv2. On the other hand, the Artix-7 has the lowest
FPS in both architectures due to limited resources and clock speed. In the
case of both heterogeneous systems, HP & LP architectures achieve higher
FPS than their individual counterparts.

155

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Total Runtime (s)

Ene
rgy

Con
sum

ptio
n(J

oul
es)

i9-11900KF 5900x 3070Xavier NX Artix-7 ZCU106HP LP

Figure 6.14: ResNet18 Energy Consumption & Total Runtime Comparison;CPU:(I9, 5900X), GPU:(3070, Xavier NX), FPGA:(Artix-7, ZCU106), High-Power(HP), Low-Power (LP).
6.6.2 Total Execution Time

Regarding Fig. 6.14 for Resnet18, it can be observed that the Artix-7 exhibits
the highest total execution time, taking approximately 1.1 seconds to com-
plete the task. Conversely, the ’GPU: 3070’ has the lowest real execution time,
both completing the task at approximately 0.18s. As for MobileNetV2 in 6.15,
the ’FPGA: Artix-7’ platform also leads with the highest execution time at 1.4s,
while the ZCU102 classifies the image in 0.19s and GPU at 0.23s. It is note-
worthy to mention that the higher runtimes observed for the GPUs may be
attributed to the communication and transfer of data from the CPU and lower
core utilisation.

Total Execution time speedups of high (HP) and Low (LP) power systems
are compared against their fastest discrete components within each system.
The ’HP’ system demonstrated a speedup of 1.05× over the ’GPU:3070’ for

156

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Total Runtime (s)

Ene
rgy

Con
sum

ptio
n(J

oul
es)

i9 5900x 3070Xavier NX Artix-7 ZCU106HP LP

Figure 6.15: MobileNetV2 Energy Consumption & Total Runtime Comparison;CPU:(I9, 5900X), GPU:(3070, Xavier NX), FPGA:(Artix-7, ZCU106), High-Power(HP), Low-Power (LP).
Resnet18 and 1.05× forMobileNetv2. In the case for ’LP’ system, it exhibited
a speedup of 1.21× over the ’GPU: Xavier NX’ for Resnet18 and 1.06× for Mo-
bileNetv2. The Convolution layer results show that the most time is spent per-
forming convolution operations. However, taking in account data/memory
transfer latency, both heterogeneous architectures implementations have in-
terconnect (PCIe) and distance bottlenecks. This bottleneck reduces the FPS of
HP & LP systems by 10 ∼ 25 which in turn allows the ’GPU:3070’ to marginally
edge out on the HP system. The disparity between the Total Wallclock and
Inference runtimes are due to the overhead and initialisation time which in-
clude model/weight loading and data preprocessing. In addition, the Fully
Connected layer revealed that all architecture had comparable performance
due to the layer’s simple MAC operations.

157

Table 6.3: ResNet-18: Result Summary of Energy Consumption and ExecutionTime on Each Architecture. (Bold: Best Runtime Performance)
Execution time (s)Accelerator Total Execution time Inference Convolution Fully Connected

Sum CPU + Device
(Joule)

Total CPU
(Joule)

Total Device
(Joule)

Datalogger
(Joule)

CPU: (i9-11900KF) 0.25 0.021 0.019 0.0009 20.035 20.04 N/A 18.23
CPU: (5900X) 0.29 0.022 0.018 0.0009 24.43 24.4267 N/A 22.48

GPU: (GTX 3070) 0.18 0.004 0.0028 0.008 19.08 8.7 10.38 9.11
Jetson (Xavier NX) 0.74 0.0128 0.0109 0.001 13.58 N/A 13.5716 10.56
FPGA: (ARCTIX7) 1.1 0.070 0.062 0.0009 6.10 N/A 6.10 5.8
FPGA: (ZCU106) 0.19 0.0042 0.0033 0.0009 9.12 N/A 9.12 8.07

5900x + 3070 + ZCU106 0.17 0.0037 0.0027 0.0009 8.93 ∼ ∼ 8.5
ARM + Xavier + Artix-7 0.62 0.012 0.011 0.0009 5.90 ∼ ∼ 5.44

Table 6.4: Mobilenet-V2: Result Summary of Energy Consumption and Execu-tion Time on Each Architecture. (Bold: Best Runtime Performance)
Execution time (s)Accelerator Total wallclock time Inference Convolution

Sum CPU + Device
(Joule)

Total CPU
(Joule)

Total Device
(Joule)

Datalogger
(Joule)

CPU: (i9-11900KF) 0.28 0.023 0.02 24.4 24.4 N/A 20.23
CPU: (5900X) 0.31 0.025 0.022 25.3 25.3 N/A 21.48

GPU: (GTX 3070) 0.231 0.0048 0.0045 21.945 9.24 12.70 19.43
Jetson (Xavier NX) 0.79 0.018 0.0125 15.28 N/A 15.28 14.92
FPGA: (ARCTIX7) 1.4 0.098 0.088 7.32 N/A 7.32 6.24
FPGA: (ZCU106) 0.20 0.0046 0.0036 10.55 N/A 10.55 9.65

5900x + 3070 + ZCU106 0.19 0.0041 0.0029 9.89 ∼ ∼ 9.01
ARM + Xavier + Artix-7 0.74 0.0145 0.015 6.80 ∼ ∼ 5.86

6.6.3 Energy Consumption

Concerning energy consumption, the discrete ’5900 & I9’ CPUs consume the
most energy in both CNN architectures, around 20 ∼ 26 Joules. The least
amount of energy consumed is from both FPGA architectures, ’FPGA: Artix’
and ’FPGA: ZCU106’, which used less than 15 Joules for both networks. Taking
CPU idle energy usage into account results in GPUs having comparable energy
usage statistics with both CPUs which is linked to higher CPU-GPU data trans-
fer and initialisation cost. However, HP and LP systems consume 1.02× and
1.03× less energy, respectively, compared to the single ZCU106 and Artix ar-
chitectures for Resnet18. As forMobileNetV2, there is a 1.06× and 1.07× reduc-
tion in energy consumption for the ’HP’ and ’LP’ systems, respectively. The idle
accelerators within heterogeneous systems had their clocks lowered to save
on static energy consumption. However, a small increase in idle energy usage
was observed during execution. If idle energy is taken into account, then the
energy consumption results of both HP & LP systems would be greater than
discrete FPGA but lower than GPU.

158

6.7 Conclusion

In this chapter, partitioning strategies are introduced tomap the layers of two
widely used convolutional neural networks, namely, Resnet18 and Mobilnetv2,
along with a feature extraction algorithm (SIFT), onto a heterogeneous ar-
chitecture. Two new CPU-GPU-FPGA systems, one designed for high perfor-
mance and the other for low-power consumption, are proposed. The experi-
ments demonstrate that when layer/per-operation partitioning methods are
applied, both high-power and low-power systems outperform homogeneous
accelerators in terms of energy efficiency and execution time. Furthermore,
the results suggest that partitioning networks based on their layer profiles
holds the potential for efficient deployment on heterogeneous architectures,
offering a viable alternative to GPU/FPGA-only applications.

159

7 Discussion, Conclusions and
Future Work

The aim of this thesis is to present domain-specific optimisation techniques
for image processing algorithms on heterogeneous hardware. In section 7.1,
the research problems are identified and discussed. Furthermore, in section
7.2, the contributions to addressing the problems are presented. Lastly, in
section 7.3, future research directions extending the work are suggested.

7.1 Discussion

The thesis focuses on achieving two main research aims, "Which is the best
method of partitioning and implementing algorithms onheterogeneous hard-
ware" and "Identifying domain-specific optimisations and understanding the
performance and accuracy trade-offs".

In the case of implementing algorithms on heterogeneous platforms, the
primary challenge is navigating the route to hardware. Designers often face
a complex terrain of diverse hardware architectures, each with unique con-
straints and optimisation opportunities. This problem can lead to a time con-
suming and error-prone process of manually configuring and optimising al-
gorithms for specific accelerators. Moreover, the need for standardised tools
and interfaces across platforms further exacerbates the difficulty of seamless
integration. Designers must grapple with the intricacies of synchronisation
and resource allocation, which can be particularly daunting in complex, real-
time image processing applications. These challenges underscore the need
for a more streamlined and systematic approach to ensure efficient deploy-
ment of algorithms on heterogeneous platforms.

160

The other challenge for heterogeneous systems is efficiently managing
data transfers between various processing units. Data movement between
processors introduces latency and consumes substantial computational re-
sources and memory bandwidth. In image processing, operations usually
form a pipeline often subject to data dependencies, making it difficult to opti-
mise the scheduling of tasks. Therefore, inefficient data transfers can lead to
a significant performance bottleneck.

Optimisation is an essential step towards extracting the best performance
out of systems. Traditional optimisations are not domain-aware and, there-
fore, cannot exploit the unique properties of specific problem domains to
improve performance. Additionally, understanding the trade-offs between
domain-specific optimisations and energy consumption or accuracy has not
been fully considered.

Finally, implementing deep-learning algorithms such as CNNs or feature
extraction algorithms on heterogeneous architectures necessitates the de-
velopment of fine-grained partitioning strategies. Applying these strategies
requires a thorough understanding of hardware architectures and profiling.
In addition, developed metrics should be used to effectively evaluate the per-
formance of heterogeneous implementations based on the type of algorithm
deployed. Addressing these challenges is critical to unlocking the full potential
of heterogeneous architectures.

7.2 Conclusions

To achieve the first objective of efficient deployment of algorithms on hetero-
geneous platforms, the characteristics of image processing algorithms were
decomposed into fundamental operations. A benchmarking framework is
presented in Chapter 4 to understand the features of algorithms found in the
image-signal pipeline and to determine their suitability for specific accelera-
tors in a heterogeneous environment. This modular framework, termed the
Heterogeneous Architecture Benchmarking Framework on Unified Resources
(HArBoUR), provides an in-depth analysis and set of metrics for imaging algo-
rithms, which in turn enables the identification of the most efficient process-
ing unit. To support the proposed framework, low and high complexity image

161

processing pipelines are evaluated on each architecture using various tools
and libraries. This gives a comprehensive insight into their design choices and
optimisations. Different evaluationmetrics are proposed such as throughput,
energy per operation and clock cycles per operation.

The following chapter 5, explores domain-specific optimisation techniques
within image processing. Several optimisations were proposed and validated
on CNNs, feature extraction and filter algorithms. The results for CNN and fil-
ter algorithms had significantly reduced computation times on all processing
architectures. In the case of the optimised SIFT algorithm implementation, it
had outperformed the state-of-the-art on FPGAs. Additionally, it achieved run-
time at par with GPU performances while consuming less power. However,
these optimisations come at the expense of reduced accuracy, highlighting
the need for thoughtful consideration when aiming to enhance performance
through domain-specific optimisations.

In the concluding Chapter 6, the development of two low and high-power
heterogeneous systemsusing commercial off-the-shelf hardware is discussed.
Moreover, two convolutional networks and a feature extraction algorithm are
profiled and analysed to identify performance hotspots and assess their hard-
ware compatibility. The algorithms are then partitioned onto the most ef-
ficient hardware using a fine-granular strategy, involving the separation of
CNNs layer by layer and operations within the feature extraction algorithm.
The implemented heterogeneous algorithms are evaluated against their dis-
crete hardware counterparts, resulting in notable speedups in performance
and reduced energy consumption.

7.3 Limitations & Future work

In this section, the limitations and potential future directions of this research
are discussed below:

7.3.1 Heterogeneous Benchmark Framework

The heterogeneous benchmarking framework proposed in Section 4 can be
extended by including additional performance metrics that consider commu-

162

nication latency and scheduling of algorithms to determine the true perfor-
mance. Further developing a tool-chain to support designers by highlighting
key areas of code that can be accelerated by a particular processor and auto-
matically partitioning algorithms without requiring additional designer input.
This automation not only saves time but also ensures that the resulting code
is fine-tuned on the target hardware.

7.3.2 Domain-Specific Optimisations

The methods described in Section 5.1 mainly centre on applying optimisa-
tions uniformly across the entire algorithm, resulting in the same optimisa-
tion being applied to every operation stagewithin the algorithms. This coarse-
grained approachmay potentially impact accuracy while having no significant
impact on the overall runtime. Therefore, adopting a fine-grained approach
by applying optimisation strategies to specific parts of an algorithm. An ex-
ample of a granular approach involves applying optimisations to individual
layers of a CNN or each stage of the SIFT algorithm, where each operation is
fine-tuned independently. Additionally, the development of a domain-specific
compiler capable of dynamically adapting and optimising algorithms based
on runtime conditions, accuracy requirements, energy considerations, and
data patterns can further enhance the efficiency and effectiveness of domain-
specific optimisations on a heterogeneous platform.

7.3.3 Heterogeneous Implementations

In section 6, future directions of this chapter involve improving the hardware,
scheduler and measurement accuracy. Initially, The heterogeneous sched-
uler on the high performance system transfers the output of one operation
or layer onto the pinned memory of the GPU or buffer. The transfer is indi-
rect since it has to go through the CPU, but can be shortened through direct
memory transfer between accelerators. The scheduling algorithm can be im-
proved by dynamically scheduling workloads for image processing if require-
ments change.

To address the challenges with data transfer latency can be separated into
two categories, Hardware and Software listed below:

163

• Hardware: Using a faster interface between accelerators than PCIe or in-
tegrating the cores onto a single compute chip to reduce the data trans-
fer distance.

• Hardware: Utilising in-memory processing which integrates computa-
tion withinmemorymodules. This design reduces datamovement over-
head and latency by processing data where it’s stored rather than shut-
tling it between memory and processors.

• Software: Latency-aware compilers predict anticipated data usage by
different processors andproactively optimise data placement to improve
data locality.

7.3.4 Domain-Specific Language

All the previously mentioned future research directions can be unified within
the framework of an image processing domain-specific language targeting im-
age processing. The language would allow users to streamline the develop-
ment of customised image pipelines by mapping algorithms together using a
data-flow model. The result of abstracting away from hardware using a high-
level signal flowdiagramwould simplify the route to hardwarewhile removing
the burden of partitioning and manual tuning from the designer.

164

Bibliography

[1] [Online]. Available: https://docs.amd.com/v/u/en-US/cordic_ds249
[2] C. Zhang, Y. Meng, and V. Prasanna, “A framework for mapping drl al-

gorithms with prioritized replay buffer onto heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 6, pp.
1816–1829, 2023.

[3] K. Wei, K. Honda, and H. Amano, “Fpga design for autonomous vehicle
driving using binarized neural networks,” in 2018 International Confer-
ence on Field-Programmable Technology (FPT), 2018, pp. 425–428.

[4] E. A. Papatheofanous, P. Tziolos, V. Kalekis, T. Amrou, G. Konstan-
toulakis, G. Venitourakis, and D. Reisis, “Soc fpga acceleration for se-
mantic segmentation of clouds in satellite images,” in 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC), 2022,
pp. 1–4.

[5] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Compari-
son of fpga, cpu, gpu, and asic,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), 2016, pp. 1–4.

[6] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
“Comparing energy efficiency of CPU, GPU and FPGA implementations
for vision kernels,” in IEEE Int’l Conf on Embedded Software and Systems
(ICESS), 2019, pp. 1–8.

[7] W. Aspray, “The intel 4004 microprocessor: what constituted inven-
tion?” IEEE Annals of the History of Computing, vol. 19, no. 3, pp. 4–15,
1997.

[8] S. Mazor, “Intel 8080 CPU chip development,” IEEE Annals of the History
of Computing, vol. 29, no. 2, pp. 70–73, 2007.

[9] [Online]. Available: https://www.eecis.udel.edu/~cavazos/cisc879/
papers/Intel-AMD/quad-core-06.pdf

165

https://docs.amd.com/v/u/en-US/cordic_ds249
https://www.eecis.udel.edu/~cavazos/cisc879/papers/Intel-AMD/quad-core-06.pdf
https://www.eecis.udel.edu/~cavazos/cisc879/papers/Intel-AMD/quad-core-06.pdf

[10] G. S. Alliance, Assembly Pricing Surveys and Reports. GSA, 2022.
[11] G. E. Smith, “The invention and early history of the CCD,” Nuclear Instru-

ments and Methods in Physics Research, Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, vol. 607, no. 1, pp. 1–6, 8 2009.

[12] E. R. Fossum, “CMOS active pixel image sensors,” Nuclear Instruments
and Methods in Physics Research, Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 395, no. 3, pp. 291–297, 8 1997.

[13] L. C. P. Gouveia and B. Choubey, “Advances on CMOS image sensors,”
Sensor Review, vol. 36, no. 3, pp. 231–239, 6 2016.

[14] “Color imaging array,” Patent, 1975.
[15] AIA, Camera Link Specification, v2.1 ed. CameraLink, 2018.
[16] PCI-SIG, PCI Express® Base Specification Revision, v2.1 ed. PCI-SIG, 2023.
[17] “Ieee standard for ethernet,” IEEE Std 802.3-2018 (Revision of IEEE Std

802.3-2015), pp. 1–5600, 2018.
[18] A. V. amp; Imaging, Video Streaming and Device Control Over Ethernet

Standard, 2nd ed. A3 Vision amp; Imaging, 2022.
[19] C.W. Group,MIPI CSI-2 Specification, v4.0.1 ed. CameraWorking Group,

2022.
[20] [Online]. Available: https://www.intel.com/content/www/us/en/

content-details/788851/meteor-lake-architecture-overview.html
[21] J. Eker and J. W. Janneck, “Cal language report specification of

the cal actor language,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M03/48, Dec 2003. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4186.html

[22] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” in Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’13. New York, NY, USA: Associ-
ation for Computing Machinery, 2013, p. 519–530. [Online]. Available:
https://doi.org/10.1145/2491956.2462176

166

https://www.intel.com/content/www/us/en/content-details/788851/meteor-lake-architecture-overview.html
https://www.intel.com/content/www/us/en/content-details/788851/meteor-lake-architecture-overview.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4186.html
https://doi.org/10.1145/2491956.2462176

[23] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems 32.
Curran Associates Inc., 2019, pp. 8024–8035.

[25] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate
cpu vs. gpu performance without the answer,” in (IEEE ISPASS) IEEE In-
ternational Symposium on Performance Analysis of Systems and Software,
2011, pp. 134–144.

[26] Y. Ma, F. Rusu, and M. Torres, “Stochastic gradient descent on mod-
ern hardware: Multi-core cpu or gpu? synchronous or asynchronous?”
in 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2019, pp. 1063–1072.

[27] E. Wszola, C. Mendler-Dunner, M. Jaggi, and M. Puschel, “On linear
learning with manycore processors,” in 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC).
IEEE, Dec. 2019. [Online]. Available: http://dx.doi.org/10.1109/HiPC.
2019.00032

[28] L. Cheng, P. Pan, Z. Zhao, K. Ranjan, J. Weber, B. Veluri, S. B. Ehsani,
M. Ruttenberg, D. C. Jung, P. Ivanov, D. Richmond, M. B. Taylor, Z. Zhang,
and C. Batten, “A tensor processing framework for cpu-manycore het-
erogeneous systems,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 41, no. 6, pp. 1620–1635, 2022.

[29] Z. Jia, A. Zlateski, F. Durand, and K. Li, “Optimizing n-dimensional,
winograd-based convolution for manycore cpus,” SIGPLAN Not., vol. 53,
no. 1, p. 109–123, feb 2018. [Online]. Available: https://doi.org/10.
1145/3200691.3178496

[30] D. Castaño-Díez, D. Moser, A. Schoenegger, S. Pruggnaller, and A. S.
Frangakis, “Performance evaluation of image processing algorithms on
the GPU,” Journal of Structural Biology, vol. 164, no. 1, pp. 153–160, 2008.

167

http://dx.doi.org/10.1109/HiPC.2019.00032
http://dx.doi.org/10.1109/HiPC.2019.00032
https://doi.org/10.1145/3200691.3178496
https://doi.org/10.1145/3200691.3178496

[31] Y. E. Wang, G.-Y. Wei, and D. M. Brooks, “Benchmarking tpu, GPU, and
CPU platforms for deep learning,” ArXiv, vol. abs/1907.10701, 2019.

[32] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. Kim, “Design and perfor-
mance evaluation of image processing algorithms on GPUs,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 91–104,
2011.

[33] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.-J. Lee, “Real-time optical flow
calculations on FPGA and GPU architectures: A comparison study,” in
2008 16th International Symposium on Field-Programmable Custom Com-
puting Machines, 2008, pp. 173–182.

[34] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama, and P. Manneback,
“Amulti-resolution FPGA-based architecture for real-time edge and cor-
ner detection,” IEEE Transactions on Computers, vol. 63, no. 10, pp. 2376–
2388, 2014.

[35] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with GPUs and FPGAs,” in 2008 Sympo-
sium on Application Specific Processors, 2008, pp. 101–107.

[36] T. Saegusa, T. Maruyama, and Y. Yamaguchi, “How fast is an FPGA in im-
age processing?” in 2008 International Conference on Field Programmable
Logic and Applications, 2008, pp. 77–82.

[37] W. MacLean, “An evaluation of the suitability of FPGAs for embedded
vision systems,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Workshops, 2005, pp. 131–131.

[38] D. Baumgartner, P. Rossler, andW. Kubinger, “Performance benchmark
of dsp and FPGA implementations of low-level vision algorithms,” in
2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007,
pp. 1–8.

[39] AMD, “Microblaze processor reference guide,” Jun 2023. [Online]. Avail-
able: https://docs.xilinx.com/v/u/en-US/ug984-vivado-microblaze-ref

[40] Jun 2023. [Online]. Available: https://www.intel.com/content/www/us/
en/docs/programmable/683632/23-1/overview.html

168

https://docs.xilinx.com/v/u/en-US/ug984-vivado-microblaze-ref
https://www.intel.com/content/www/us/en/docs/programmable/683632/23-1/overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683632/23-1/overview.html

[41] Jul 2023. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
ds890-ultrascale-overview

[42] S. Huang, L.-W. Chang, I. El Hajj, S. Garcia de Gonzalo, J. Gómez-
Luna, S. R. Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu,
D. Chen, and W.-m. Hwu, “Analysis and modeling of collabora-
tive execution strategies for heterogeneous CPU-FPGA architectures,”
in Proceedings of the 2019 ACM/SPEC International Conference on Perfor-
mance Engineering, ser. ICPE ’19. New York, NY, USA: Associa-
tion for Computing Machinery, 2019, p. 79–90. [Online]. Available:
https://doi.org/10.1145/3297663.3310305

[43] R. Rajesh, S. J. Darak, A. Jain, S. Chandhok, and A. Sharma, “Hard-
ware–software co-design of statistical and deep-learning frameworks
for wideband sensing on zynq system on chip,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 31, no. 1, pp. 79–89, 2023.

[44] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of
FPGA-based soft processors,” ser. CASES ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 202–212. [Online].
Available: https://doi.org/10.1145/1086297.1086325

[45] F. Siddiqui, S. Amiri, U. I. Minhas, T. Deng, R. Woods, K. Rafferty, and
D. Crookes, “FPGA-based processor acceleration for image processing
applications,” Journal of Imaging, vol. 5, no. 1, 2019. [Online]. Available:
https://www.mdpi.com/2313-433X/5/1/16

[46] M. Che and Y. Chang, “A hardware/software co-design of a face detec-
tion algorithm based on FPGA,” in 2010 International Conference on Mea-
suring Technology and Mechatronics Automation, vol. 1, 2010, pp. 109–
112.

[47] D. Honegger, H. Oleynikova, and M. Pollefeys, “Real-time and low la-
tency embedded computer vision hardware based on a combination
of FPGA and mobile CPU,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pp. 4930–4935.

[48] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo,
and L. Benini, “Neuraghe: Exploiting CPU-FPGA synergies for efficient
and flexible cnn inference acceleration on zynq socs,” ACM Trans.

169

https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://doi.org/10.1145/3297663.3310305
https://doi.org/10.1145/1086297.1086325
https://www.mdpi.com/2313-433X/5/1/16

Reconfigurable Technol. Syst., vol. 11, no. 3, dec 2018. [Online]. Available:
https://doi.org/10.1145/3284357

[49] C. Zhang and V. Prasanna, “Frequency domain acceleration of
convolutional neural networks on CPU-FPGA shared memory system,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 35–44. [Online].
Available: https://doi.org/10.1145/3020078.3021727

[50] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on CPU-
FPGA heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser. FPGA
’20. New York, NY, USA: Association for ComputingMachinery, 2020, p.
255–265. [Online]. Available: https://doi.org/10.1145/3373087.3375312

[51] D. J. M.Moss, E. Nurvitadhi, J. Sim, A. Mishra, D.Marr, S. Subhaschandra,
and P. H. W. Leong, “High performance binary neural networks on the
xeon+FPGA™ platform,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), 2017, pp. 1–4.

[52] H. Cho, J. Lee, and J. Lee, “Farnn: FPGA-GPU hybrid acceleration plat-
form for recurrent neural networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 7, pp. 1725–1738, 2022.

[53] M. Hosseinabady, M. A. B. Zainol, and J. L. Núñez-Yáñez, “Heteroge-
neous FPGA+GPU embedded systems: Challenges and opportunities,”
ArXiv, vol. abs/1901.06331, 2019.

[54] Y. Tu, S. Sadiq, Y. Tao, M.-L. Shyu, and S.-C. Chen, “A power efficient
neural network implementation on heterogeneous FPGA and GPU de-
vices,” in 2019 IEEE 20th International Conference on Information Reuse
and Integration for Data Science (IRI), 2019, pp. 193–199.

[55] W. Carballo-Hernández, M. Pelcat, and F. Berry, “Why is FPGA-GPU het-
erogeneity the best option for embedded deep neural networks?” ArXiv,
vol. abs/2102.01343, 2021.

[56] N. Sumeet, K. Rawat, M. Nambiar, and R. Singhal, “Hetero-vis: A frame-
work for latency optimized heterogeneous deployment of convolu-

170

https://doi.org/10.1145/3284357
https://doi.org/10.1145/3020078.3021727
https://doi.org/10.1145/3373087.3375312

tional neural networks,” in Euro-Par 2022: Parallel Processing Workshops.
Springer Nature Switzerland, 2023, pp. 171–183.

[57] D. T. Nguyen, T. N.Nguyen, H. Kim, andH.-J. Lee, “A high-throughput and
power-efficient FPGA implementation of yolo cnn for object detection,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 8, pp. 1861–1873, 2019.

[58] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-based accelerators of
deep learning networks for learning and classification: A review,” IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[59] S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure, and S. Markidis, “Ex-
ploring the vision processing unit as co-processor for inference,” in 2018
IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), 2018, pp. 589–598.

[60] A. Kyriakos, E.-A. Papatheofanous, B. Charalampos, E. Petrongonas,
D. Soudris, and D. Reisis, “Design and performance comparison of cnn
accelerators based on the intel movidius myriad2 soc and FPGA em-
bedded prototype,” in 2019 International Conference on Control, Artificial
Intelligence, Robotics Optimization (ICCAIRO), 2019, pp. 142–147.

[61] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu, L. Xu,
and L. Van Gool, “Ai benchmark: All about deep learning on smart-
phones in 2019,” in 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), 2019, pp. 3617–3635.

[62] W. Fang, Y. Zhang, B. Yu, and S. Liu, “FPGA-based ORB feature extrac-
tion for real-time visual slam,” in 2017 International Conference on Field
Programmable Technology (ICFPT), 2017, pp. 275–278.

[63] A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky, “Imaging: In-
memory algorithms for image processing,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 12, pp. 4258–4271, 2018.

[64] S. Song, S. Lee, J. P. Ko, and J. W. Jeon, “A hardware architecture design
for real-time gaussian filter,” in 2014 IEEE International Conference on In-
dustrial Technology (ICIT), 2014, pp. 626–629.

171

[65] W. Fang, Y. Zhang, B. Yu, and S. Liu, “FPGA-based orb feature extrac-
tion for real-time visual slam,” in 2017 International Conference on Field
Programmable Technology (ICFPT), 2017, pp. 275–278.

[66] H. Zhang, M. Xia, and G. Hu, “A multiwindow partial buffering scheme
for FPGA-based 2-d convolvers,” IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, vol. 54, no. 2, pp. 200–204, 2007.

[67] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison
of FPGA, GPU and CPU in image processing,” in 2009 International Con-
ference on Field Programmable Logic and Applications, 2009, pp. 126–131.

[68] J. Jiang, X. Li, and G. Zhang, “Sift hardware implementation for real-time
image feature extraction,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 24, no. 7, pp. 1209–1220, 2014.

[69] L. Bai, Y. Zhao, and X. Huang, “A cnn accelerator on FPGA using depth-
wise separable convolution,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 65, no. 10, pp. 1415–1419, 2018.

[70] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An FPGA-based cnn accel-
erator integrating depthwise separable convolution,” Electronics, vol. 8,
no. 3, 2019.

[71] J. Ryu and T. H. Nishimura, “Fast image blurring using lookup table for
real time feature extraction,” in 2009 IEEE International Symposium on
Industrial Electronics, 2009, pp. 1864–1869.

[72] M. Mese and P. Vaidyanathan, “Look-up table (lut) method for inverse
halftoning,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp.
1566–1578, 2001.

[73] E. Kadric, D. Lakata, and A. Dehon, “Impact of parallelism and mem-
ory architecture on FPGA communication energy,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 9, no. 4, aug 2016.

[74] E. Kadric, D. Lakata, and A. DeHon, “Impact of memory architecture
on FPGA energy consumption,” in Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser. FPGA
’15. New York, NY, USA: Association for Computing Machinery, 2015,
p. 146–155.

172

[75] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy, “Power-efficient
ram mapping algorithms for FPGA embedded memory blocks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 2, pp. 278–290, 2007.

[76] P. Garcia, D. Bhowmik, R. Stewart, G. Michaelson, and A. Wallace, “Opti-
mized memory allocation and power minimization for FPGA-based im-
age processing,” Journal of Imaging, vol. 5, no. 1, p. 7, Jan 2019.

[77] N. Zhang, X. Wei, L. Chen, and H. Chen, “Three-level memory access ar-
chitecture for FPGA-based real-time remote sensing image processing
system,” in 2019 IEEE International Conference on Signal, Information and
Data Processing (ICSIDP), 2019, pp. 1–6.

[78] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, mar 2016.

[79] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
survey of quantizationmethods for efficient neural network inference,”
CoRR, vol. abs/2103.13630, 2021.

[80] “Review of deep learning: concepts, cnn architectures, challenges, ap-
plications, future directions,” Journal of Big Data, vol. 8, no. 1, pp. 1–74,
2021.

[81] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions on Neural Net-
works, vol. 4, no. 5, pp. 740–747, 1993.

[82] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman cod-
ing,” 2016.

[83] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolu-
tional neural networks using energy-aware pruning,” 2017.

[84] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015.

173

[85] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in 2017 IEEE International Conference on Computer Vi-
sion (ICCV), 2017, pp. 1398–1406.

[86] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
SIGPLAN Not., vol. 48, no. 6, p. 519–530, jun 2013. [Online]. Available:
https://doi.org/10.1145/2499370.2462176

[87] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson,
“The pochoir stencil compiler,” ser. SPAA ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 117–128. [Online].
Available: https://doi.org/10.1145/1989493.1989508

[88] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. A. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in CGO 2021,
2021.

[89] W. Lin and L. Dong, “Adaptive downsampling to improve image com-
pression at low bit rates,” IEEE Transactions on Image Processing, vol. 15,
no. 9, pp. 2513–2521, 2006.

[90] S. Sinha and W. Zhang, “Low-power FPGA design using memoization-
based approximate computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 8, pp. 2665–2678, 2016.

[91] Y. Zeng, L. Cheng, G. Bi, and A. Kot, “Integer dcts and fast algorithms,”
IEEE Transactions on Signal Processing, vol. 49, no. 11, pp. 2774–2782,
2001.

[92] S. Niklaus, L.Mai, and F. Liu, “Video frame interpolation via adaptive sep-
arable convolution,” in 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 261–270.

[93] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design flow of ac-
celerating hybrid extremely low bit-width neural network in embedded
fpga,” in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL), 2018, pp. 163–1636.

174

https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/1989493.1989508

[94] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, “Real-time high-quality
stereo vision system in FPGA,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 25, no. 10, pp. 1696–1708, 2015.

[95] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3d mapping in
real-time on a CPU,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 2021–2028.

[96] B. Rister, G. Wang, M. Wu, and J. R. Cavallaro, “A fast and efficient sift
detector using themobile GPU,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, pp. 2674–2678.

[97] O. Rioul and P. Duhamel, “Fast algorithms for discrete and continuous
wavelet transforms,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 569–586, 1992.

[98] O. Fialka and M. Cadik, “Fft and convolution performance in image fil-
tering on GPU,” in Tenth International Conference on Information Visuali-
sation (IV’06), 2006, pp. 609–614.

[99] D. Zhang, X. Shen, and Y. Song, “The implementation of large fft con-
volution on heterogeneous multicore programmable system,” in 2016
International Conference on Integrated Circuits and Microsystems (ICICM),
2016, pp. 349–353.

[100] B. Qiao, O. Reiche, F. Hannig, and J. Teich, “From loop fusion to ker-
nel fusion: A domain-specific approach to locality optimization,” in 2019
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2019, pp. 242–253.

[101] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, M. Ravishankar, V. Grover,
A. Rountev, L.-N. Pouchet, and P. Sadayappan, “Domain-specific op-
timization and generation of high-performance GPU code for stencil
computations,” Proceedings of the IEEE, vol. 106, no. 11, pp. 1902–1920,
2018.

[102] O. Reiche, K. Häublein, M. Reichenbach, M. Schmid, F. Hannig, J. Teich,
and D. Fey, “Synthesis and optimization of image processing accelera-
tors using domain knowledge,” Journal of Systems Architecture, vol. 61,
no. 10, pp. 646–658, 2015.

175

[103] V. STRASSEN, “Gaussian elimination is not optimal.” Numerische
Mathematik, vol. 13, pp. 354–356, 1969. [Online]. Available: http:
//eudml.org/doc/131927

[104] Y. Zhao, D. Wang, L. Wang, and P. Liu, “A faster algorithm for reducing
the computational complexity of convolutional neural networks,”
Algorithms, vol. 11, no. 10, 2018. [Online]. Available: https://www.mdpi.
com/1999-4893/11/10/159

[105] S. Winograd, Arithmetic Complexity of Computations, ser. CBMS-NSF Re-
gional Conference Series in AppliedMathematics. Society for Industrial
and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadel-
phia, PA 19104), 1980.

[106] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4013–4021, 2015.

[107] J. Yepez and S.-B. Ko, “Stride 2 1-d, 2-d, and 3-d winograd for convolu-
tional neural networks,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 4, pp. 853–863, 2020.

[108] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference, ser. AFIPS
’68 (Spring). New York, NY, USA: Association for ComputingMachinery,
1968, p. 307–314.

[109] M. Kim, D. Kim, M. Sung, and W. W. Ro, “An accelerated separable me-
dian filter with sorting networks,” in 2015 IEEE International Conference
on Image Processing (ICIP), 2015, pp. 803–807.

[110] H. Kim, H. Nam,W. Jung, and J. Lee, “Performance analysis of cnn frame-
works for GPUs,” in 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2017, pp. 55–64.

[111] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient cnn
implementation on a deeply pipelined FPGA cluster,” Proceedings of the
2016 International Symposium on Low Power Electronics and Design, 2016.

[112] Xilinx, Vitis Unified Software Platform Documentation, ug1400
(v2019.2) ed., Xilinx, San Jose, California, United States, 3 2020.

176

http://eudml.org/doc/131927
http://eudml.org/doc/131927
https://www.mdpi.com/1999-4893/11/10/159
https://www.mdpi.com/1999-4893/11/10/159

[113] Mathworks, “Simulink - simulation and model-based design.” [Online].
Available: https://www.mathworks.com/products/simulink.html?s_tid=
hp_products_simulink

[114] Intel, “High-level synthesis compiler - intel® hls compiler.” [On-
line]. Available: https://www.intel.co.uk/content/www/uk/en/software/
programmable/quartus-prime/hls-compiler.html

[115] Janestreet, “janestreet/hardcaml.” [Online]. Available: https://github.
com/janestreet/hardcaml

[116] Cadence, “Stratus high-level synthesis.” [Online]. Available: https:
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/
synthesis/stratus-high-level-synthesis.html

[117] AUGH, “Augh.” [Online]. Available: http://tima.imag.fr/sls/
research-projects/augh/

[118] U. of illnois, “Shang.” [Online]. Available: https://github.com/etherzhhb/
Shang

[119] P. Solod, N. Jindapetch, K. Sengchuai, A. Booranawong, P. Hoy-
ingcharoen, S. Chumpol, and M. Ikura, “Memory optimization for accel-
erating hough transform on FPGA using high level synthesis,” in 2019
IEEE International Circuits and Systems Symposium (ICSyS), 2019, pp. 1–4.

[120] J. Cong, B. Liu, R. Prabhakar, and P. Zhang, “A study on the impact of
compiler optimizations on high-level synthesis,” in LCPC, 2012.

[121] J. Cong, M. Huang, and Y. Zou, “Accelerating fluid registration algorithm
on multi-FPGA platforms,” 09 2011, pp. 50–57.

[122] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level synthe-
sis of stereo matching: Productivity, performance, and software con-
straints,” in 2011 International Conference on Field-Programmable Tech-
nology, 2011, pp. 1–8.

[123] Y. Liang, K. Rupnow, Y. Li, D. Min, M. Do, and D. Chen, “High-level syn-
thesis: Productivity, performance, and software constraints,” Journal of
Electrical and Computer Engineering, vol. 2012, 02 2012.

177

https://www.mathworks.com/products/simulink.html?s_tid=hp_products_simulink
https://www.mathworks.com/products/simulink.html?s_tid=hp_products_simulink
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://github.com/janestreet/hardcaml
https://github.com/janestreet/hardcaml
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
http://tima.imag.fr/sls/research-projects/augh/
http://tima.imag.fr/sls/research-projects/augh/
https://github.com/etherzhhb/Shang
https://github.com/etherzhhb/Shang

[124] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson,
“The effect of compiler optimizations on high-level synthesis for FPGAs,”
in 2013 IEEE 21st Annual International Symposium on Field-Programmable
Custom Computing Machines, 2013, pp. 89–96.

[125] C. Li, Y. Bi, Y. Benezeth, D. Ginhac, and F. Yang, “High-level synthesis for
FPGAs: Code optimisation strategies for real-time image processing,”
Journal of Real-Time Image Processing, vol. 14, 10 2017.

[126] K. W. N. Corp., “C-based behavioral synthesis and verification analysis
on industrial design examples.” ASP-DAC ’04 Proceedings of the 2004 Asia
and South Pacific Design Automation Conference, 2004.

[127] A. Ishikawa, N. Fukushima, A. Maruoka, and T. Iizuka, “Halide and gen-
esis for generating domain-specific architecture of guided image filter-
ing,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
2019, pp. 1–5.

[128] R. Stewart, K. Duncan, G. Michaelson, P. Garcia, D. Bhowmik, and
A. Wallace, “Ripl: A parallel image processing language for FPGAs,”
vol. 11, no. 1, 2018. [Online]. Available: https://doi.org/10.1145/
3180481

[129] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert,
“Hipacc: A domain-specific language and compiler for image process-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 1,
pp. 210–224, 2016.

[130] J. Serot, F. Berry, and S. Ahmed, “Implementing stream-processing ap-
plications on FPGAs: A dsl-based approach,” in 2011 21st International
Conference on Field Programmable Logic and Applications, 2011, pp. 130–
137.

[131] J. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez, “Reconfigurable
video coding: A stream programming approach to the specification of
new video coding standards,” MMSys ’10: Proceedings of the first annual
ACM SIGMM conference on Multimedia systems, 01 2010.

[132] Q. Gautier, A. Althoff, P. Meng, and R. Kastner, “Spector: An opencl
FPGA benchmark suite,” in 2016 International Conference on Field-
Programmable Technology (FPT), 2016, pp. 141–148.

178

https://doi.org/10.1145/3180481
https://doi.org/10.1145/3180481

[133] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV:
An opensource GPU-accelerated framework for image processing and
computer vision,” in Proceedings of the 16th ACM International Conference
on Multimedia, ser. MM ’08. New York, NY, USA: Association for Com-
puting Machinery, 2008, p. 1089–1092.

[134] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and eval-
uation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3, pp.
10–19, 2018.

[135] C. Qi, Y. Wang, H. Wang, Y. Lu, S. S. Subramanian, F. Cahill, C. Tuohy,
V. Li, X. Qian, D. Crews, L. Wang, S. Roy, A. Deidda, M. Power, N. Hanra-
han, R. Richmond, U. Cheema, A. Raha, A. Palla, G. Baugh, and D. Math-
aikutty, “Vpu-em: An event-basedmodeling framework to evaluate npu
performance and power efficiency at scale,” 2023.

[136] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
“Comparing energy efficiency of CPU, GPU and FPGA implementations
for vision kernels,” in 2019 IEEE International Conference on Embedded
Software and Systems (ICESS), 2019, pp. 1–8.

[137] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Cole-
man, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner,
I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee,
J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne,
G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang,
M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong,
P. Zhang, and Y. Zhou, “Mlperf inference benchmark,” in Proceedings of
the ACM/IEEE 47th Annual International Symposium on Computer Architec-
ture, ser. ISCA ’20. IEEE Press, 2020, p. 446–459.

[138] M. Mazumder, C. Banbury, X. Yao, B. Karlaš, W. G. Rojas, S. Diamos,
G. Diamos, L. He, A. Parrish, H. R. Kirk, J. Quaye, C. Rastogi, D. Kiela,
D. Jurado, D. Kanter, R.Mosquera, J. Ciro, L. Aroyo, B. Acun, L. Chen,M. S.
Raje, M. Bartolo, S. Eyuboglu, A. Ghorbani, E. Goodman, O. Inel, T. Kane,
C. R. Kirkpatrick, T.-S. Kuo, J. Mueller, T. Thrush, J. Vanschoren, M. War-
ren, A. Williams, S. Yeung, N. Ardalani, P. Paritosh, C. Zhang, J. Zou, C.-J.

179

Wu, C. Coleman, A. Ng, P. Mattson, and V. J. Reddi, “Dataperf: Bench-
marks for data-centric ai development,” 2023.

[139] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[140] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing
(shoc) benchmark suite,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, ser. GPGPU-3. New
York, NY, USA: Association for Computing Machinery, 2010, p. 63–74.

[141] B. Hu and C. J. Rossbach, “Mirovia: A benchmarking suite for modern
heterogeneous computing,” ArXiv, vol. abs/1906.10347, 2019.

[142] M. Blott, L. Halder, M. Leeser, and L. Doyle, “Qutibench: Benchmarking
neural networks on heterogeneous hardware,” J. Emerg. Technol. Com-
put. Syst., vol. 15, no. 4, dec 2019.

[143] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner,
“Survey and benchmarking of machine learning accelerators,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC), Sep. 2019,
pp. 1–9.

[144] [Online]. Available: https://xilinx.github.io/Vitis_Libraries/dsp/2022.1/
index.html

[145] [Online]. Available: https://www.xilinx.com/support/documents/ip_
documentation/xfft/v9_1/pg109-xfft.pdf

[146] M. Meyer, T. Kenter, and C. Plessl, “Evaluating fpga accelerator perfor-
mancewith a parameterized opencl adaptation of selected benchmarks
of the hpcchallenge benchmark suite,” in 2020 IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Computing
(H2RC). IEEE, 2020, pp. 10–18.

[147] [Online]. Available: https://docs.amd.com/r/en-US/pg286-v-demosaic

180

https://xilinx.github.io/Vitis_Libraries/dsp/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/dsp/2022.1/index.html
https://www.xilinx.com/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://docs.amd.com/r/en-US/pg286-v-demosaic

[148] [Online]. Available: https://docs.amd.com/r/3.2-English/pg338-dpu/
Overview

[149] M. Geier, F. Franzen, and S. Chakraborty, “Hardware-accelerated data
acquisition and authentication for high-speed video streams on future
heterogeneous automotive processing platforms,” in IEEE/ACM Int’l Conf.
on Computer-Aided Design (ICCAD), 2018, pp. 1–6.

[150] F. Dias, F. Berry, J. Serot, and F. Marmoiton, “Hardware, design and
implementation issues on a FPGA-based smart camera,” in 2007 First
ACM/IEEE International Conference on Distributed Smart Cameras, 2007,
pp. 20–26.

[151] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, andM. Norgren, “Introducing
radiation tolerant heterogeneous computers for small satellites,” in IEEE
Aerospace Conference, 2015, pp. 1–10.

[152] Xilinx. Ug1137 - zynq ultrascale+ mpsoc: Soft-
ware developers guide (v2020.1). [Online]. Avail-
able: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2020_1/ug1137-zynq-ultrascale-mpsoc-swdev.pdf

[153] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the Seventh IEEE International Conference on Computer Vi-
sion, vol. 2, 1999, pp. 1150–1157 vol.2.

[154] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and
A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
404–417.

[155] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient al-
ternative to sift or surf,” in 2011 International Conference on Computer
Vision, 2011, pp. 2564–2571.

[156] J. MCCALPIN, “Stream : Sustainable memory bandwidth in high perfor-
mance computers,” http://www.cs.virginia.edu/stream/, 2006.

[157] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” 10 2006.

181

https://docs.amd.com/r/3.2-English/pg338-dpu/Overview
https://docs.amd.com/r/3.2-English/pg338-dpu/Overview
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1137-zynq-ultrascale-mpsoc-swdev.pdf

[158] “Hwmonitor,” Mar 2023. [Online]. Available: https://www.cpuid.com/
softwares/hwmonitor.html

[159] “Nvidia system management interface,” Mar 2023. [Online]. Available:
https://developer.nvidia.com/nvidia-system-management-interface

[160] “xbutil,” Mar 2023. [Online]. Available: https://xilinx.github.io/XRT/
master/html/xbutil.html

[161] D. Bhowmik and K. Appiah, “Embedded vision systems: A review of the
literature,” in International Symposiumon Applied Reconfigurable Comput-
ing. Springer, 2018, pp. 204–216.

[162] J. Vourvoulakis, J. Kalomiros, and J. Lygouras, “Fully pipelined FPGA-
based architecture for real-time SIFT extraction,” Microprocessors and
Microsystems, vol. 40, pp. 53–73, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0141933115001921

[163] G. Chaple and R. D. Daruwala, “Design of Sobel operator based image
edge detection algorithm on FPGA,” in 2014 International Conference on
Communication and Signal Processing, 2014, pp. 788–792.

[164] P. Leyva, G. Doménech-Asensi, J. Garrigós, J. Illade-Quinteiro, V. M. Brea,
P. López, and D. Cabello, “Simplification and hardware implementation
of the feature descriptor vector calculation in the SIFT algorithm,” in
2014 24th International Conference on Field Programmable Logic and Ap-
plications (FPL), 2014, pp. 1–4.

[165] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520.

[166] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[167] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

182

https://www.cpuid.com/softwares/hwmonitor.html
https://www.cpuid.com/softwares/hwmonitor.html
https://developer.nvidia.com/nvidia-system-management-interface
https://xilinx.github.io/XRT/master/html/xbutil.html
https://xilinx.github.io/XRT/master/html/xbutil.html
https://www.sciencedirect.com/science/article/pii/S0141933115001921
https://www.sciencedirect.com/science/article/pii/S0141933115001921

[168] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[169] R. Andraka, “A survey of cordic algorithms for FPGA based computers,”
in Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, 1998, pp. 191–200.

[170] “Usb-to-pmbus interface,” Mar 2023. [Online]. Avail-
able: https://www.stg-maximintegrated.com/en/products/power/
switching-regulators/MAXPOWER.html

[171] J. Liu, D. Liu, W. Yang, S. Xia, X. Zhang, and Y. Dai, “A comprehensive
benchmark for single image compression artifacts reduction,” in arXiv,
2019.

[172] L.-C. Chiu, T.-S. Chang, J.-Y. Chen, and N. Y.-C. Chang, “Fast SIFT design
for real-time visual feature extraction,” IEEE Transactions on Image Pro-
cessing, vol. 22, no. 8, pp. 3158–3167, 2013.

[173] K. Mizuno, H. Noguchi, G. He, Y. Terachi, T. Kamino, T. Fujinaga, S. Izumi,
Y. Ariki, H. Kawaguchi, and M. Yoshimoto, “A low-power real-time SIFT
descriptor generation engine for full-HDTV video recognition,” IEICE
Transactions, vol. 94-C, pp. 448–457, 04 2011.

[174] J. Vourvoulakis, J. Kalomiros, and J. Lygouras, “Fully pipelined FPGA-
based architecture for real-time SIFT extraction,” Microprocessors and
Microsystems, vol. 40, pp. 53–73, 2016.

[175] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520.

[176] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 770–778, 2015.

[177] “Otii arc pro,” Mar 2023. [Online]. Available: https://www.qoitech.com/
otii-arc-pro/

183

https://www.stg-maximintegrated.com/en/products/power/switching-regulators/MAXPOWER.html
https://www.stg-maximintegrated.com/en/products/power/switching-regulators/MAXPOWER.html
https://www.qoitech.com/otii-arc-pro/
https://www.qoitech.com/otii-arc-pro/

	Abstract
	Attestation
	Acknowledgements
	List of Symbols and Acronyms
	Statement of Originality
	Introduction
	Motivation
	Research Objectives
	Thesis Outline
	Publications

	Background
	Image Processing Pipeline
	Imaging Sensor
	Image Sensor Characterisation

	Interface Technologies
	Camera Link
	Peripheral Component Interface Express (PCIe)
	Ethernet
	Universal Serial Bus (USB)
	Mobile Industry Processor Interface (MIPI)
	FPGA Mezzanine Card (FMC)
	Summary

	Hardware Architectures
	Multi-Core Central Processing Unit (CPU)
	Graphics Processing Unit (GPU)
	Field-Programmable Gate Array (FPGA)
	Application-Specific Integrated Circuits (ASICs)
	Heterogeneous Architectures
	Summary
	Software Ecosystem

	Conclusion

	State-of-the-Art
	Hardware Targeting Image Processing
	Multi-Core CPU Architectures
	CPU-GPU Architectures
	CPU-FPGA Architectures
	CPU-GPU-FPGA Architectures

	ASIC Architecture
	Image Processing Optimisations
	High-Level Synthesis
	Benchmarking
	Evaluated Image Processing Algorithms
	Conclusion

	HArBoUR: Heterogeneous Architecture Benchmarking on Unified Resources
	Introduction
	Benchmarking Framework for Image Processing on Hardware
	Processing Pipeline & Operation Types:
	Operator Group
	Heterogeneous Benchmarking Development Flow

	Benchmarking Methodology
	Micro Benchmarking Algorithms
	Macro Benchmarking Algorithms
	Performance Metrics
	Measurement Environments
	Measurement Approach

	Experiments, Results & Discussion
	Individual ISP Algorithms
	Combined ISP Pipelines
	Energy Consumption & Throughput Results
	Discussions

	Conclusions

	Domain-Specific Optimisations
	Domain-Specific Optimisations
	Optimisation I: Down Sampling
	Optimisation II: Datatype
	Optimisation III & IV: Convolution

	Case Study Algorithms
	SIFT
	Digital Filters
	Convolutional Neural Network

	Experimental Results and Discussion
	Performance Metrics
	Results and Discussions

	Conclusion & Future Direction

	Image Processing Algorithms on Heterogeneous Platforms
	Heterogeneous Architecture
	CNN Development Flow:

	Scale-Invariant Feature Transform
	SIFT Algorithm Analysis
	SIFT Profiling & Partitioning Strategy

	Convolutional Neural Network
	Convolution Neural Network Architecture:
	CNN Profiling & Partitioning Strategy:

	Experimental Setup
	CPU-GPU-FPGA Data Communication
	Execution time
	Power Consumption

	Experimental Results
	Heterogeneous SIFT Results

	Heterogeneous CNN Results
	Inference
	Total Execution Time
	Energy Consumption

	Conclusion

	Discussion, Conclusions and Future Work
	Discussion
	Conclusions
	Limitations & Future work
	Heterogeneous Benchmark Framework
	Domain-Specific Optimisations
	Heterogeneous Implementations
	Domain-Specific Language

